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Supplementary Figure 1: MSD Plots for Scenario 1 Data
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Mean-squared displacement (MSD) analysis results for the 12 image sequences of Scenario 1
in the competition data set. The graphs show the results for the four different SNR levels (1,
2, 4, 7) and three different density levels (Low, Mid, High). Each plot shows the results for all
applicable particle tracking methods as well as the ground-truth (reference) data using the same
color coding throughout (see legend). The MSD curves are shown for time intervals ranging
from 1 to 20 frames (the upper time-interval limit was approximately equal to the average track
length in the data). The gray-shaded area in each plot indicates the uncertainty in the ground-
truth MSD values (from minus to plus one time the standard deviation around the plotted mean
MSD value). For each method, the corresponding MSD values are indicated by points (using a
different point shape and color for each method), and the result of curve fitting is indicated by
a line drawn through these points (using a different line style per method but the same color as
the corresponding points). For the curve fitting in this scenario (Brownian motion) we used linear
functions. A weighted fitting was used (based on the standard deviation of MSD values) to account
for the difference in reliability for different time lags (reflected by the gray-shaded area). The fitting
was done using Matlab (Version 8.1.0.604 / R2013a, MathWorks, Natick, MA, USA). Note that in
some cases it was not possible to find a good fit, resulting in anomalous curves. And for some
methods, no MSD values could be computed for the longer time intervals, because apparently the
method produced only fragmented tracks of relatively short length.
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Supplementary Figure 2: MSD Plots for Scenario 2 Data
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Mean-squared displacement (MSD) analysis results for the 12 image sequences of Scenario 2
in the competition data set. The graphs show the results for the four different SNR levels (1,
2, 4, 7) and three different density levels (Low, Mid, High). Each plot shows the results for all
applicable particle tracking methods as well as the ground-truth (reference) data using the same
color coding throughout (see legend). The MSD curves are shown for time intervals ranging
from 1 to 20 frames (the upper time-interval limit was approximately equal to the average track
length in the data). The gray-shaded area in each plot indicates the uncertainty in the ground-
truth MSD values (from minus to plus one time the standard deviation around the plotted mean
MSD value). For each method, the corresponding MSD values are indicated by points (using a
different point shape and color for each method), and the result of curve fitting is indicated by a
line drawn through these points (using a different line style per method but the same color as the
corresponding points). For the curve fitting in this scenario (directed motion) we used quadratic
functions. A weighted fitting was used (based on the standard deviation of MSD values) to account
for the difference in reliability for different time lags (reflected by the gray-shaded area). The fitting
was done using Matlab (Version 8.1.0.604 / R2013a, MathWorks, Natick, MA, USA). Note that in
some cases it was not possible to find a good fit, resulting in anomalous curves. And for some
methods, no MSD values could be computed for the longer time intervals, because apparently the
method produced only fragmented tracks of relatively short length.
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Supplementary Figure 3: MSD Plots for Scenario 3 Data
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Mean-squared displacement (MSD) analysis results for the 12 image sequences of Scenario 3 in
the competition data set. The graphs show the results for the four different SNR levels (1, 2, 4, 7)
and three different density levels (Low, Mid, High). Each plot shows the results for all applicable
particle tracking methods as well as the ground-truth (reference) data using the same color coding
throughout (see legend). The MSD curves are shown for time intervals ranging from 1 to 20
frames (the upper time-interval limit was approximately equal to the average track length in the
data). The gray-shaded area in each plot indicates the uncertainty in the ground-truth MSD values
(from minus to plus one time the standard deviation around the plotted mean MSD value). For
each method, the corresponding MSD values are indicated by points (using a different point shape
and color for each method), and the result of curve fitting is indicated by a line drawn through these
points (using a different line style per method but the same color as the corresponding points).
For the curve fitting in this scenario (combined Brownian and directed motion) we used linear +
quadratic functions. A weighted fitting was used (based on the standard deviation of MSD values)
to account for the difference in reliability for different time lags (reflected by the gray-shaded area).
The fitting was done using Matlab (Version 8.1.0.604 / R2013a, MathWorks, Natick, MA, USA).
Note that in some cases it was not possible to find a good fit, resulting in anomalous curves.
And for some methods, no MSD values could be computed for the longer time intervals, because
apparently the method produced only fragmented tracks of relatively short length.
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Supplementary Figure 4: MSD Plots for Scenario 4 Data
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Mean-squared displacement (MSD) analysis results for the 12 image sequences of Scenario 4 in
the competition data set. The graphs show the results for the four different SNR levels (1, 2, 4, 7)
and three different density levels (Low, Mid, High). Each plot shows the results for all applicable
particle tracking methods as well as the ground-truth (reference) data using the same color coding
throughout (see legend). The MSD curves are shown for time intervals ranging from 1 to 20
frames (the upper time-interval limit was approximately equal to the average track length in the
data). The gray-shaded area in each plot indicates the uncertainty in the ground-truth MSD values
(from minus to plus one time the standard deviation around the plotted mean MSD value). For
each method, the corresponding MSD values are indicated by points (using a different point shape
and color for each method), and the result of curve fitting is indicated by a line drawn through these
points (using a different line style per method but the same color as the corresponding points).
For the curve fitting in this scenario (combined Brownian and directed motion) we used linear +
quadratic functions. A weighted fitting was used (based on the standard deviation of MSD values)
to account for the difference in reliability for different time lags (reflected by the gray-shaded area).
The fitting was done using Matlab (Version 8.1.0.604 / R2013a, MathWorks, Natick, MA, USA).
Note that in some cases it was not possible to find a good fit, resulting in anomalous curves.
And for some methods, no MSD values could be computed for the longer time intervals, because
apparently the method produced only fragmented tracks of relatively short length.
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Supplementary Figure 5: Velocity Plots for Scenario 1 Data 
 

The following pages show the velocity histograms (left plots) and corresponding box plots (right plots) for 

the 12 image sequences of Scenario 1 in the competition data set. Each page shows the results for one 

density level (Low, Mid, High) and the four different SNR levels (1, 2, 4, 7). Each plot shows the results for 

all applicable particle tracking methods as well as the ground-truth (reference) data using the same color 

coding throughout. In the box plots, the boxes indicate the 25th-75th percentile, the horizontal bar inside a 

box indicates the median value, the whiskers range from the 1st to the 99th percentile, and the gray circles 

above/below the whiskers indicate the outliers. 
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Supplementary Figure 6: Velocity Plots for Scenario 2 Data 
 

The following pages show the velocity histograms (left plots) and corresponding box plots (right plots) for 

the 12 image sequences of Scenario 2 in the competition data set. Each page shows the results for one 

density level (Low, Mid, High) and the four different SNR levels (1, 2, 4, 7). Each plot shows the results for 

all applicable particle tracking methods as well as the ground-truth (reference) data using the same color 

coding throughout. In the box plots, the boxes indicate the 25th-75th percentile, the horizontal bar inside a 

box indicates the median value, the whiskers range from the 1st to the 99th percentile, and the gray circles 

above/below the whiskers indicate the outliers. 
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Supplementary Figure 7: Velocity Plots for Scenario 3 Data 
 

The following pages show the velocity histograms (left plots) and corresponding box plots (right plots) for 

the 12 image sequences of Scenario 3 in the competition data set. Each page shows the results for one 

density level (Low, Mid, High) and the four different SNR levels (1, 2, 4, 7). Each plot shows the results for 

all applicable particle tracking methods as well as the ground-truth (reference) data using the same color 

coding throughout. In the box plots, the boxes indicate the 25th-75th percentile, the horizontal bar inside a 

box indicates the median value, the whiskers range from the 1st to the 99th percentile, and the gray circles 

above/below the whiskers indicate the outliers. 
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Supplementary Figure 8: Velocity Plots for Scenario 4 Data 
 

The following pages show the velocity histograms (left plots) and corresponding box plots (right plots) for 

the 12 image sequences of Scenario 4 in the competition data set. Each page shows the results for one 

density level (Low, Mid, High) and the four different SNR levels (1, 2, 4, 7). Each plot shows the results for 

all applicable particle tracking methods as well as the ground-truth (reference) data using the same color 

coding throughout. In the box plots, the boxes indicate the 25th-75th percentile, the horizontal bar inside a 

box indicates the median value, the whiskers range from the 1st to the 99th percentile, and the gray circles 

above/below the whiskers indicate the outliers. 
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Supplementary Figure 9: Localization Plots for Scenario 1 Data 
 

The following pages show the (normalized) localization histograms (left plots) and corresponding box plots 

(right plots) for the 12 image sequences of Scenario 1 in the competition data set. Each page shows the 

results for one density level (Low, Mid, High) and the four different SNR levels (1, 2, 4, 7). Each plot shows 

the results for all applicable particle tracking methods as well as the ground-truth (reference) data using 

the same color coding throughout. In the box plots, the boxes indicate the 25th-75th percentile, the 

horizontal bar inside a box indicates the median value, the whiskers range from the 1st to the 99th 

percentile, and the gray circles above/below the whiskers indicate the outliers. 
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Supplementary Figure 10: Localization Plots for Scenario 2 Data 
 

The following pages show the (normalized) localization histograms (left plots) and corresponding box plots 

(right plots) for the 12 image sequences of Scenario 2 in the competition data set. Each page shows the 

results for one density level (Low, Mid, High) and the four different SNR levels (1, 2, 4, 7). Each plot shows 

the results for all applicable particle tracking methods as well as the ground-truth (reference) data using 

the same color coding throughout. In the box plots, the boxes indicate the 25th-75th percentile, the 

horizontal bar inside a box indicates the median value, the whiskers range from the 1st to the 99th 

percentile, and the gray circles above/below the whiskers indicate the outliers. 
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Supplementary Figure 11: Localization Plots for Scenario 3 Data 
 

The following pages show the (normalized) localization histograms (left plots) and corresponding box plots 

(right plots) for the 12 image sequences of Scenario 3 in the competition data set. Each page shows the 

results for one density level (Low, Mid, High) and the four different SNR levels (1, 2, 4, 7). Each plot shows 

the results for all applicable particle tracking methods as well as the ground-truth (reference) data using 

the same color coding throughout. In the box plots, the boxes indicate the 25th-75th percentile, the 

horizontal bar inside a box indicates the median value, the whiskers range from the 1st to the 99th 

percentile, and the gray circles above/below the whiskers indicate the outliers. 
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Supplementary Figure 12: Localization Plots for Scenario 4 Data 
 

The following pages show the (normalized) localization histograms (left plots) and corresponding box plots 

(right plots) for the 12 image sequences of Scenario 4 in the competition data set. Each page shows the 

results for one density level (Low, Mid, High) and the four different SNR levels (1, 2, 4, 7). Each plot shows 

the results for all applicable particle tracking methods as well as the ground-truth (reference) data using 

the same color coding throughout. In the box plots, the boxes indicate the 25th-75th percentile, the 

horizontal bar inside a box indicates the median value, the whiskers range from the 1st to the 99th 

percentile, and the gray circles above/below the whiskers indicate the outliers. 
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Supplementary Table 5: Top-3 Best Methods for Different Gates 
 

The following sub-tables show the top-3 best performing methods for decreasing values (5, 4, 3, 2, 1 pixel) 

of the gate parameter   described in Supplementary Note 3. Below each sub-table the histogram of 

ranking differences compared to    5 pixels are shown for each performance measure. As described in the 

main paper, of the 48 (cases) x 14 (methods) = 672 possible tracking results, 505 were submitted, 

amounting to the same number of rankings per measure (each method was ranked for each case according 

to that measure). By changing  , each method could potentially increase or decrease in rank, up to 13 

places. Since in most cases the change in the ranking of any method was less than 5 places, only the portion 

of the histograms within that range are shown. 
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Supplementary Note 1: Particle Tracking Methods 

 

This document provides a description of all particle tracking methods evaluated in this study. In total 14 

teams participated with their own, custom developed methods. Generally speaking, particle tracking 

methods consist of two steps: 1) particle detection (the spatial aspect), in which spots that stand out 

sufficiently from the background according to certain criteria are identified in every frame of the image 

sequence, and 2) particle linking (the temporal aspect), in which detected particles are connected from 

frame to frame using another set of criteria, to form tracks.1-6 Here we explain the concepts underlying 

the detection and the linking step of each method. A summary of the methods is given in Table 1 of the 

main paper. We also summarize the user parameters of each method and typical values. The exact 

parameter values for each method and each image sequence in this study are given in Supplementary 

Table 1. Software implementations of the methods are either publicly available or can be requested 

from the corresponding authors, as indicated for each method. 

 

METHOD 1 

Authors: Ivo F. Sbalzarini, Yuanhao Gong, Janick Cardinale 

Email: ivos@mpi-cbg.de 

Software: http://mosaic.mpi-cbg.de/?q=downloads 

Form: ImageJ plugin 

 

METHOD 1: INTRODUCTION 

This method was designed for applications where large numbers of images of low signal-to-noise ratio 

(SNR) need to be analyzed in the absence of prior knowledge about the type of motion. The former is 

typically the case in high-throughput screens, while the latter is a common situation during the 

explorative phase of discovery. There, one does not wish to assume any motion model or prior, in order 

not to bias the results toward the expected type of motion, that is, not to miss or overlook unexpected 

motion patterns in the data. The design goals of the method hence were computational efficiency, prior-

freeness, ease of use, and robust detection performance at low SNR. Motion priors can be included into 

the linking cost function of the algorithm, but are not present in its basic version. Balancing prior 

information and data fidelity is a fundamental challenge for any particle tracking algorithm, and 

shortcomings in one can often be compensated by additional effort in the other. Full details about the 

method can be found in a previous publication.7 
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METHOD 1: DETECTION 

Detection is based on finding local maxima at the pixel level followed by iterative intensity-weighted 

centroid calculation at subpixel resolution. A pixel is taken as a local maximum if no other pixel within a 

radius of   around it is brighter, and if its intensity is in the upper  -th percentile of all intensity values in 

the image. Local maxima detection is done by grayscale dilation followed by selecting all pixels that have 

the same value before and after dilation. Percentiles are computed per frame in order to be robust 

against possible drift in image intensity over time (for example due to photo-bleaching). Detected 

candidate points can optionally be filtered in order to reduce false-positive detections. False positives 

are identified as those points whose intensity moments of order 0 and 2 are significantly different from 

the moments of the majority of points. This is done by clustering the points in intensity-moment space 

and discarding all points that are in regions with a density smaller than a given cutoff.7 For each retained 

candidate, the subpixel particle centroid position is estimated as the intensity-weighted centroid within a 

radius  , updating the pixel-level position if the centroid in any direction is more than half a pixel away, 

and repeating the centroid calculation until convergence. The radius parameter   should be chosen 

slightly larger than the apparent radius of a particle in the image, but smaller than the smallest inter-

particle distance, which is usually in the range of 2 to 6 pixels for typical images. The percentile 

parameter   should correspond to the percentage of pixels in the image covered by particles, which is 

usually in the range of 0.1% to 5%. 

 

METHOD 1: LINKING 

Linking of detected particles across frames is done by approximately solving a combinatorial optimization 

problem under the topological constraint that particles do not split or fuse. Particles entering or leaving 

the scene are accounted for by linking them to a "dummy". Optimization is done using greedy hill-

climbing starting from a nearest-neighbor initialization. The distance metric considers the location, 

intensity, and the second moment of the intensity distribution of the particles. Infeasible links, 

determined by a link-length cutoff   corresponding to the largest distance any particle may travel from 

one frame to the next, are flagged and excluded from the optimization process in order to increase 

computational efficiency. The optimizer stops when no more cost-improving link can be found, indicating 

a local optimum. The linking optimization can optionally be done over multiple frames in order to 

account for intermittent detections (fluorophore blinking) and to close gaps in tracks. This is done by 

applying the approximate combinatorial optimizer over different frame shifts       and choosing 

the best result. The value of the link-length cutoff parameter   should be set depending on the time 
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resolution of the image sequence and the velocity of the particles. For well-sampled sequences, typical 

cutoffs are about 5 to 20 pixels. The link-range parameter   should be set to the number of frames that 

particles are expected to be missing due to fluorophore blinking. Higher link ranges increase the 

computational cost and the probability of erroneous links. In practical applications, suitable values are in 

the range of 1 to 5 (mostly 1 or 2). In the present study,   was fixed to 1, as particles did not blink. 

 

METHOD 1: PARAMETERS 

The user parameters of this method (and typical values) are: 

 Radius for local maxima detection and centroid computation (2-6 pixels). 

 Cutoff for discarding detections based on intensity moments (0-10). 

 Percentile of image intensities that detected maxima must be in (0.1%-5%). 

 Link-range used by the combinatorial optimizer for linking detections (1-5 frames). 

 Link-length cutoff for linking detections in successive frames (5-20 pixels). 

The exact parameter values for each image sequence in this study are given in Supplementary Table 1. 

 

METHOD 2 

Authors: Craig Carthel and Stefano Coraluppi 

Email: stefano.coraluppi@compunetix.com 

Software: Contact the authors 

Form: Windows executable 

 

METHOD 2: INTRODUCTION 

This method was designed with the goal to avoid, to the extent possible, redundant detections per 

particle. Most automatic multi-object tracking schemes allow for some missed detections but are based 

on the underlying assumption that each particle gives rise to at most one detection per sensor scan. 

Repeated multiple detections will invariably give rise to spurious tracks. The detection method was 

developed specifically for this study and has not been published before. The linking method was based 

on previously published tracking concepts for multi-target surveillance applications.8,9 

 

METHOD 2: DETECTION 

A straightforward non-adaptive detection scheme includes a convolution step with a notional disk (in 2D) 

or spheroid (in 3D) shaped object model, followed by a local-maximum detector applied at the pixel 
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level. For this study, the radius of the shape model was typically set to 2 pixels in   and in  , and 1 pixel 

in  . Local maxima are those pixels (2D) or voxels (3D) with intensity larger than or equal to all neighbors 

(8-connected in 2D and 26-connected in 3D) and larger than at least one neighbor. After sorting the local 

maxima based on intensity, from highest (most likely to be a true particle) to lowest (least likely to be a 

true particle), a threshold is applied to result in a number of detections that exceeds by 25% the 

expected particle count based on aggregate ground-truth analysis of the data from the training phase. 

This simple scheme avoids the need for measurement clustering. Some redundant detections on 

extended particles may occur, but tend to be rare in practice. Our analysis of the intensity of detected 

particles on a per-image basis suggested an adaptive scheme to improve detection performance. For 

each image of a sequence, starting with a number of (highest-intensity) detections that is 50% of the 

expected number of particles, detections (with successively lower intensities) are added one by one, 

while keeping track of the mean intensity of the selected detections and the mean intensity of the non-

selected detections. The process stops when the intensity of the present candidate detection has equal 

distance to these two means. If this does not occur, the scheme reverts to the non-adaptive one, and the 

number of detections is set to 125% of the expected number of particles. 

 

METHOD 2: LINKING 

The linking of detected particle objects is done by means of multiple hypothesis tracking (MHT). This 

powerful tracking paradigm was first formalized in what is now referred to as the hypothesis-oriented 

approach.10 Unfortunately, this approach typically leads to an unmanageable number of hypotheses, 

even for small problems. In this study, we therefore employed the track-oriented MHT approach 

instead.9,11 The goal is to estimate the state history (tracks)    of all particles in the field of view, based 

on the sequence              of sets of detections   , for all time points        . Each object 

may exist for only a subset of these times, with a single birth and a single death occurrence, that is 

objects do not reappear. We introduce the auxiliary discrete state history   , which represents a full 

interpretation of all detection data: which detections are false, how the object-originated ones are to be 

associated, and when objects are born and die. Two fundamental assumptions are made here: 1) there 

are no object births in the absence of a corresponding detection (we do not reason over new, 

undetected objects), and 2) there is at most one detection per object per image of a sequence. 

 

We are interested in the probability distribution          of object state histories, given the detections. 

This quantity can be obtained by conditioning over all possible auxiliary state histories: 
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The MHT approach aims to compute the maximum a posteriori (MAP) estimate for the auxiliary state 

history   , and the corresponding minimum mean-squared error (MMSE) estimate for the object state 

history   , conditioned on the estimate for   : 

          
  

          

 

          
           

Compared to hypothesis-oriented MHT, track-oriented MHT avoids enumeration of all global hypotheses 

  , though these are implicitly defined in the set of track hypotheses trees. In practice, computational 

requirements preclude optimal, batch MHT solutions. Practical MHT solutions adopt a number of 

computational simplifications that include the following: 1) Hypotheses over undetected object births 

are excluded. 2) Hypothesis growth is limited by hypothesis gating, which disallows sufficiently unlikely 

associations, using the standard chi-square test with elliptical gating.12 Following Blackman's notation, 

the threshold is set to    9.21, which leads to 99% gating. That is, statistically, 1% of particle-originated 

measurements will not be considered feasible updates to an active track on the same particle. Further, 

we do not spawn both missed-detection and death hypotheses. Generally, only a missed-detection 

hypothesis is spawned, and after a sufficient number of missed detections only an object-death 

hypothesis is spawned. 3) The track hypothesis trees are pruned so as to result in a single global 

hypothesis with a fixed latency in terms of number of images. For example, if processing is done with a 

two-image tree depth, particle tracks at time   are reported only after processing of detections at time 

   . Hypothesis pruning generally relies on relaxation techniques for an otherwise challenging integer 

optimization problem. Well-known techniques include Lagrangian relaxation and linear programming.8, 

13,14 4) Track extraction is performed sequentially using logic-based or statistical tests including the 

sequential probabilistic ratio test (SPRT).15 We opted for the former approach as in practice the SPRT is 

generally quite similar to the M-of-N confirmation test and K-miss termination test. 

 

The key enabler for track-oriented MHT is the recursive formulation for the posterior probability of a 

global hypothesis given below. This expression relies on the assumption that in each image, the number 

of object births is Poisson distributed with mean    (the discrete-time equivalent to the continuous-time 

birth rate), the number of false returns is Poisson distributed with mean    (though this number does 
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not impact track extraction), objects die with probability    (the discrete-time equivalent to the 

continuous-time death rate), and objects are detected with probability   . Further,   is the number of 

tentative tracks under      and, with   ,   is the number of detections,   is the number of track deaths, 

and   is the number of new tracks. Correspondingly, if   denotes the number of detections in the current 

image,       is the number of false returns. Finally,   ,   , and   , denote the sets of detections, 

births, and false alarms, respectively, with                 . Thus: 

           
 
              

     
   

               
       

         
       

 

    

   
           

       

         
       

 

    

 
            

   
  

with 

          
 
           

  
        

       

          

 

  

  

The expressions given here allow for quite general object and sensor models. In the context of this study, 

standard linear Gaussian assumptions were used, for which the Kalman filter is directly applicable. Thus, 

       
       , that is the probability of observing    given a sequence of preceding measurements, is a 

Gaussian residual. This quantity relies on the Kalman filter prediction step with an assumed kinematic 

process noise that accounts for object maneuvering uncertainty as well as the assumed measurement 

error standard deviation in each dimension ( ,  , and   if applicable). If there is no prior information on 

the objects,        
        is the value of the uniform density function over measurement space. 

Similarly,        
        is taken to be the value of the uniform density function over measurement 

space, under the assumption of uniformly distributed false returns. Depending on the scenario, either 

the near-constant velocity or near-constant position model was used. Filter initialization in the case of 

the nearly-constant velocity model relies on a zero-mean prior velocity assumption with known velocity 

variance in each dimension ( ,  , and   if applicable). 

 

Tracking performance improves substantively if track extraction processing impacts data association 

processing. Thus, the recursive track scoring expression noted above is modified slightly by introducing 

two track-update score multipliers (confirmation reward and continuation reward) greater than unity 

that increase        
         for nearly-confirmed and confirmed tracks. They are chosen to be greater 
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for confirmed tracks than for nearly-confirmed tracks. Correspondingly, confirmed tracks are favored 

over nearly-confirmed tracks, and nearly-confirmed tracks are favored over tentative tracks. 

 

METHOD 2: PARAMETERS 

The user parameters of this method (and typical values) are: 

 Radius of the shape model for detection (2 pixels in  -  and 1 pixel in  ). 

 Parameters M and N used in the M-of-N confirmation test (3-10). 

 Parameter K used in the K-miss termination test (1-3). 

 Confirmation reward multiplier used in the track scoring (2). 

 Continuation reward multiplier used in the track scoring (4). 

Other parameters of this method automatically computed from training data: 

 Expected particle count for detection thresholding. 

 Birth rate of new particles in the field of view. 

 Death rate of existing particles in the field of view. 

 Detection probability of particles in the field of view. 

 Kinematic process noise used in the Kalman filter. 

 Measurement error standard deviation used in the Kalman filter. 

 Velocity variance used for Kalman filter initialization. 

The exact parameter values for each image sequence in this study are given in Supplementary Table 1. 

 

METHOD 3 

Authors: Nicolas Chenouard, Fabrice de Chaumont, Jean-Christophe Olivo-Marin 

Email: jcolivo@pasteur.fr 

Software: Contact the authors 

Form: Icy plugin 

 

METHOD 3: INTRODUCTION 

The particle detection procedure of this method is based on a previously published method16 for 

extracting spots in biological images that exploits the multiscale nature of the particle signal compared to 

the noise. The linking procedure has also been published recently17,18 and was designed to deal with 

missing and spurious detections by multiframe optimization using multiple hypothesis tracking. 
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METHOD 3: DETECTION 

The particle detection step consists in a signal enhancement based on image filtering with a wavelet 

transform, followed by shrinkage of the wavelet coefficients, image reconstruction, and particle 

identification in the particle-enhanced image. Multiscale image decomposition is performed using an 

undecimated wavelet transform based on B-splines.19 This transform is well-suited for the task of 

fluorescent particle enhancement, as it well-approximates Gaussian functions of various sizes that are 

known to be good approximations of the point spread function (PSF) of microscopes, and the band-pass 

properties of the filters cancel out constant and slowly varying backgrounds. Relevant coefficients for the 

particle detection task are identified by applying a hard threshold to the amplitude of the coefficients at 

each scale. The rationale for this step is that in the wavelet domain, particle signals are sparsely 

represented (few coefficients are sufficient to represent particles), while noise is spread out. 

Thresholding the wavelet coefficients thus largely discards noise and preserves the particle coefficients. 

After reconstruction of the image from the thresholded coefficients, noise should thus be largely 

removed and the background is flattened. This allows us to identify particle locations simply as local 

intensity maxima. In this study we used a two-scale wavelet decomposition, a coefficients threshold of 

80 to 100 depending on SNR and particle density, and a minimal distance of 2 pixels between detections 

to avoid multiple detections per particle. 

 

METHOD 3: LINKING 

After putative particles have been detected in the whole image sequence, they need to be linked 

through time into tracks, missing detections need to be compensated for, and spurious detections need 

to be discarded. To this end, an optimization framework was used that aims at solving these issues all at 

the same time, via multiple hypothesis tracking (MHT).17,18 It relies on an exhaustive Bayesian model of 

the tracking problem that is used to estimate the likelihood of the tracks. The model includes a statistical 

motion model that can account for both diffusive and directed particle movements, or for one of these 

alone. The statistics of the detection stage (the number of false and missed detections), as well as the 

statistics of particle appearance, are also included in the model. In this study, these statistics were 

learned from the training data, which was representative for the data used in the competition phase. In 

the case of real biological data, the statistics will need to be estimated manually from a representative 

subset of the data. The tracking problem is recast as a frame-to-frame likelihood maximization problem, 

with the specific feature of including both past and several future time points for each optimization step. 

Multiframe tracking helps resolving the correspondence between tracks and detections, discarding false 
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detections and compensating for missing ones, especially in low SNR conditions.18 Each likelihood 

optimization step is formulated as a combinatorial tree exploration that can be efficiently solved using 

dedicated hypothesis pruning strategies.17 No further processing is required after solving the likelihood 

maximization problem for each frame, since track creation and the identification of spurious and missing 

detections are all natively taken into account in our framework. 

 

METHOD 3: PARAMETERS 

The user parameters of this method (and typical values) are: 

 Wavelet coefficient threshold (80-110). 

 Particle detection probability (0.70-0.99). 

 Expected number of false detections per frame (0.1-100 depending on SNR). 

 Track confirmation threshold based on particle probabilities (0.1-0.5). 

 Track termination threshold  based on particle probabilities (0.001-0.01). 

 Expected track length (fixed to 25 frames in this study). 

 Expected motion type (diffusive, directed, or mixed, as appropriate). 

 Motion updating based on estimated or given diffusion coefficient (not used here). 

 Expected particle displacement between frames (3-5 pixels in  -  and 1.5 slices in  ). 

 Gate factor determining the search area for particle association (3-5). 

 Number of future frames used in the likelihood maximization (3-4). 

 Expected number of new particles per frame (5-100). 

 Expected number of initial particles in the first frame (100-400). 

The exact parameter values for each image sequence in this study are given in Supplementary Table 1. 

 

METHOD 4 

Authors: Mark Winter and Andrew R. Cohen 

Email: acohen@coe.drexel.edu 

Software: Contact the authors 

Form: Matlab script 

 

METHOD 4: INTRODUCTION 

This method is based on multitemporal association tracking (MAT), which is a solution to the problem of 

associating future paths of detection (or segmentation) results to extend the set of existing tracks. MAT 
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is an alternative to the bipartite or multidimensional assignment approaches typically used with multiple 

hypothesis tracking (MHT). The main difference between MAT and approaches based on MHT is in the 

formulation of the optimization constraints in the data association, which should result in improved 

robustness to detection errors caused by noise or visual ambiguity in the images. MAT has been applied 

previously to tracking axonal organelle transport20 and to tracking and lineaging proliferating cells.21 In 

MAT, an application-specific detection algorithm is applied to all image frames prior to tracking. There is 

also a post-tracking refinement step that uses the tracking results to improve the detection. 

 

METHOD 4: DETECTION 

Background noise removal is applied prior to detection. To this end, the observed image    is modeled as 

a combination of low-frequency background noise  , random shot noise  , and the original image   to 

be recovered:         .22 The low-frequency background contribution is estimated using a low-

pass filter, implemented by iteratively convolving the image with a Gaussian kernel (with     pixel). 

After subtracting the estimated background component from the observed image, the high frequency 

shot noise is removed using a median filter to produce the final denoised image.  Detection of particles in 

the denoised image is accomplished by separately applying Otsu thresholding23 and regional local 

maxima detection24 and combining the results of these operations by a logical AND. Particle positions are 

taken as the centroid of regional maxima pixels in each connected component of foreground pixels in the 

denoised image. The detection algorithm has only two parameters: the number of iterations of 

convolution with the Gaussian kernel for the low-pass filtering, and the weighting factor for the Otsu 

thresholding on the denoised data. These two parameters were set automatically using the training data 

to guide the search of the range of parameter values. After the linking stage, described below, the 

detection results are refined by two additional steps. First, for each track, the location of the 

corresponding particle in each frame is adjusted by selecting the location on the regional maximum of 

the denoised image that minimizes the linear prediction error from the surrounding frames. Second, to 

accommodate occlusions, detections are added to each track for any frames where no detections were 

assigned, using linear interpolation on the locations of surrounding detections in time. Together, these 

refinements generated a few percent improvement in accuracy on the training data. 

 

METHOD 4: LINKING 

Solutions to the data association problem generally define an association function         , where    is a 

track to be extended, and    is a sequence of detections extending   frames into the future, with  
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           if    is not assigned to   , and            if it is. In MHT, the data association problem 

can be solved between adjacent frames (using, for example, bipartite or rectangular assignment), or 

across a window of frames simultaneously (multidimensional assignment). In either case, MHT 

implementations typically include the constraint that each track can be assigned to at most one 

sequence of detections, and vice versa:              and             . To be able to deal with 

more challenging applications, where particles may (actually or apparently) split or merge, this constraint 

is relaxed in MAT. That is, a single track is allowed to be associated with more than one sequence of 

detections, and vice versa. In addition to capturing the visual aspects of the underlying biological 

problem where objects do appear to split and merge, this also changes the computational nature of the 

problem, allowing a solution to be optimized using minimum spanning tree algorithms in polynomial 

time. Importantly, MAT does not require explicit modeling of any characteristics except for typical 

behaviors of the objects being tracked. For Scenario 2 (microtubules) in this study, the typical behavior 

used by the tracker was the approximately constant velocity of particle motion. 

 

MAT proceeds incrementally through each image frame. The first step is path discovery, which identifies 

all track extensions, or possible sequences of detections, extending up to   frames into the future. To 

improve performance, path discovery is gated using empirically determined maximum velocity and 

acceleration values. A track suitability, or cost function, assigns a cost to each possible track extension. 

By minimizing this cost function, MAT approximates the Bayesian a posteriori probability estimate for 

the data association problem.25 For Scenario 2 in this study, the cost function was formulated as a 

weighted combination of linear prediction along the track and extension. The prediction was done by 

computing the minimum norm solution to the linear least-squares problem using singular value 

decomposition. This cost function is a simplified version of the cost function applied previously for 

tracking axonal organelle transport.20 The function values for each track extension are preserved in a 

sparse graph and can be used in subsequent processing to incorporate higher-level knowledge of the 

application domain. In this study, these preserved costs were used in the post-tracking refinement of the 

detections, described above. After path discovery, tracks are associated with extensions using a 

minimum spanning tree algorithm.26 Occlusions are handled by allowing tracks not associated with any 

extensions to be included in the processing for subsequent frames. The MAT algorithm has only two 

parameters: maximum velocity and acceleration. These were estimated empirically using the training 

data set and fixed for all image sequences in the competition phase of the study. 
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METHOD 4: PARAMETERS 

The user parameters of this method (and typical values) are: 

 Number of iterations of convolution with the Gaussian kernel (10-500). 

 Weighting factor for the Otsu thresholding (1-3). 

 Temporal window size for multidimensional assignment (4 frames). 

 Maximum velocity used to constrain the linking (10 pixels/frame). 

 Maximum acceleration used to constrain the linking (7.5 pixels/frame2). 

The exact parameter values for each image sequence in this study are given in Supplementary Table 1. 

 

METHOD 5 

Authors: William J. Godinez and Karl Rohr 

Email: k.rohr@dkfz-heidelberg.de 

Software: Contact the authors 

Form: Java module 

 

METHOD 5: INTRODUCTION 

This method is based on our previously published work27,28 and uses a probabilistic approach to particle 

tracking that relies on particle representation via Gaussian functions, detection and localization of 

particles based on the spot-enhancing filter or Gaussian fitting, position estimation of individual particles 

using Kalman filters, and measurement integration via probabilistic data association. More concretely, 

each particle is represented by either a 2D isotropic Gaussian function, a 2D anisotropic Gaussian 

function, or a 3D anisotropic Gaussian function, depending on the application. The Gaussian function is 

parameterized by the position         or           of the particle in a 2D or 3D image, 

respectively, by the peak intensity     , and by the standard deviations   ,    (2D case) or   ,   ,    (3D 

case). For each image of an image sequence, the method performs four steps: 1) detection and 

localization of particles, 2) prediction of the position of the tracked particles, 3) matching of the 

predicted positions with the detected particles, and 4) position estimation. 

 

METHOD 5: DETECTION 

To detect and localize particles, image regions corresponding to the objects of interest are enhanced 

using the spot-enhancing filter, also known as the Laplacian-of-Gaussian filter.29,30 The standard 

deviations      and     of the filter are chosen based on the size of the particles (typical values are 2 
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pixels and 1.5 voxels, respectively). To detect regions corresponding to particles, a threshold for the filter 

response is computed and a connected-components labeling algorithm (8-connectivity in 2D and 6-

connectivity in 3D) is applied. The threshold for the filtered image intensities is automatically determined 

based on the mean intensity of the filtered image plus a factor     (typically 3) times the standard 

deviation of the filtered image intensities. The position of each particle is determined by computing the 

intensity-weighted center of mass. For 2D image data of elongated objects (such as microtubule tips), 

the underlying 2D Gaussian representation takes into consideration the orientation of the object. To 

estimate the orientation of the object we use a 2D Gaussian fitting scheme.27 To reduce the image noise, 

a Gaussian filter is used. The value for the standard deviation      of the filter is set based on the size of 

the particles. To suppress the background, intensity values below the clipping threshold       are set to 

     . The clipping threshold is computed as the mean intensity of the image plus a factor     times the 

standard deviation of the image intensities. Image regions corresponding to particles are detected by 

performing a search for local intensity maxima on the clipped image. To localize each particle, we fit a 2D 

Gaussian function to each candidate image region. 

 

METHOD 5: LINKING 

To calculate a prediction for the position of each particle we use a spatial-temporal filter. In cases where 

particles perform a random walk, we use a Kalman filter with a random walk motion model. In cases 

where particles move in a directed manner, we use a Kalman filter with a constant-velocity motion 

model. In cases where particles alternate between random walk motion and directed motion, we use an 

interacting multiple model (IMM) filter31,32 using a random walk model as well as a constant velocity 

model. The random walk motion model is parameterized by the expected squared displacement     

(typically 9 pixels2/frame2) of the particle over a time interval while the constant-velocity model is driven 

by the expected squared deviation of each velocity component     (typically 25 pixels2/frame3) over a 

time interval. For finding the correspondence between a predicted position and a detected particle we 

use a global nearest-neighbor approach.7 In the case of the IMM filter, the correspondence approach 

considers only the predicted position of the motion model with the highest a priori probability. To 

improve the robustness, the spatial-temporal filter queries the image directly at positions determined by 

the predicted image position and its associated covariance matrix, as computed by the Kalman filter. 

Each position is assigned a weight that reflects the likelihood that the tracked particle generated a 2D or 

3D Gaussian-like blob at the evaluated image position.28 The likelihood is regulated by the expected level 

of image noise    (typically 12 intensity units). This weight is also calculated for the predicted and 
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detected positions. To take into account the presence of neighboring objects, for each tracked object we 

compute the support provided by each image position to its neighboring objects as reflected by the 

weights of the neighboring objects. Using this information, the weights are adjusted by penalizing the 

weights of positions where the support for the neighboring objects is high. The multiple positions and 

their corresponding weights are integrated into the Kalman filter via a combined innovation.28 For the 

IMM filter, the weights are also used to calculate the likelihood of each motion model. The final position 

of a tracked particle is computed using the associated spatial-temporal filter. 

 

METHOD 5: PARAMETERS 

The user parameters of this method (and typical values) are: 

 Standard deviation (     and    ) of the Laplacian-of-Gaussian filter (2 pixels and 1.5 voxels). 

 Threshold factor ( ) for particle detection (-3) and background suppression (-0.5). 

 Expected square displacement (   ) in the random walk motion model (9 pixels2/frame2). 

 Expected square deviation (   ) in the constant-velocity motion model (25 pixels2/frame3). 

 Expected noise level (  ) in the likelihood calculations (5-50 intensity units). 

The exact parameter values for each image sequence in this study are given in Supplementary Table 1. 

 

METHOD 6 

Author: Yannis Kalaidzidis 

Email: kalaidzi@mpi-cbg.de 

Software: http://motiontracking.mpi-cbg.de/ 

Form: Windows executable 

 

METHOD 6: INTRODUCTION 

This method was developed specifically for tracking particles in 2D fluorescence microscopy image 

sequences and combines an efficient particle fitting algorithm with dynamic programming for linking. A 

detailed description of the method and its application to the study of endosome biogenesis and 

maintenance mechanisms has already been published.33 

 

METHOD 6: DETECTION 

Prior to particle detection a background subtraction step is performed. The background is estimated 

using a windowed floating mean algorithm. Briefly, the median value within a sliding window is 
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calculated, and all values above the median plus two times the standard deviation are excluded from the 

set, after which the median value is recalculated. The process is repeated three times. This approach 

avoids overestimating the background as a result of extremely bright objects. The estimated background 

is subtracted from the image, and the remaining image signal with fluorescent particles is modeled by 

the following expression: 

        
  

  

 
 
 

 
  
                           

  
 
 

 
 

 
                           

  
 
 

 
 
 

 
 
 

 

    

 

where    is the particle intensity,         is the particle center position,    and    are, respectively, the 

width and height of the particle,    is the angle between the principal axes of the particle and the image 

axes,    is the background residue in the vicinity of the particle, and   is the particle index. The use of the 

Lorentzian function          for modeling the particle profiles was inspired by practical arguments. It 

is qualitatively similar to using a Gaussian but computationally much faster. Fitting of the model is done 

using the modified Powell algorithm.34 Fitted structures are subtracted from the image, and the 

procedure is repeated iteratively to capture all structures above two standard deviation of the noise. The 

latter is assumed to be Poisson distributed and its parameters are estimated from the background in the 

image sequence. Two partially overlapping particles are combined if the ratio between the local 

minimum intensity and the intensity of the smallest of the two peaks exceeds 40-90% (a user-definable 

parameter). The fitting produces a set of particles with known position, cross-sectional area, and 

intensity statistics. 

 

METHOD 6: LINKING 

The linking step is performed using dynamic programming, assigning four consecutive image frames at 

once, with track breaks as assignment possibility, and overcoming the use of greedy algorithms. Track 

assignments maximize the weighted sum of costs for position, speed, cross-sectional area, peak 

intensity, sum intensity, and deviation from a straight line, using a previously published approach.35 The 

user-definable weights (not normalized) in this procedure were manually optimized per image sequence. 
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METHOD 6: PARAMETERS 

The user parameters of this method (and typical values) are: 

 Window size for estimating the background (60 x 60 pixels). 

 Merging ratio of intensities for overlapping particles (40-90%). 

 Position weight in the cost function for track assignment (0.7). 

 Speed weight in the cost function for track assignment (0.01-0.3). 

 Area weight in the cost function for track assignment (0.3-0.6). 

 Peak intensity weight in the cost function for track assignment (0.15-0.3). 

 Sum intensity weight in the cost function for track assignment (0.01-0.1). 

 Deviation weight in the cost function for track assignment (0.01-0.5). 

The exact parameter values for each image sequence in this study are given in Supplementary Table 1. 

 

METHOD 7 

Authors: Liang Liang, James Duncan, Hongying Shen, Yingke Xu 

Email: liang.liang@yale.edu 

Software: Contact the authors 

Form: Matlab script 

 

METHOD 7: INTRODUCTION 

This method is based on a previously published method,36 originally developed for the analysis of clathrin 

mediated endocytosis by tracking particles, namely clathrin coated pits (CCPs). The most important bio-

parameters are the lifetimes of the particles, and the absolute positions are less interesting. 

Quantification of the lifetime parameters requires high detection and linking accuracies, as expressed by 

the numbers of the true/false positives/negatives, or related measures such as the Jaccard similarity 

index. For the present study, the method was further equipped with an interacting multiple model 

(IMM) filter and integer programming, and applied to Scenarios 1 (vesicles) and 3 (receptors). 

 

METHOD 7: DETECTION 

Particles are assumed to have a Gaussian profile on top of a constant background intensity level and 

possessing Poisson noise statistics. Potential particle loci are detected frame-by-frame by using the 

normalized Laplacian-of-Gaussian (LoG) filter29,30 and finding the local maxima in the filter response. To 

separate true-positive from false-positive (noise) detections, an optimal threshold is automatically 
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determined by fitting a two-component Gaussian mixture model to the distribution of the original image 

intensities and of the potential particle loci, using an expectation maximization algorithm. A subpixel 

position estimate of each surviving detection after thresholding is obtained by fitting Gaussian mixture 

models to the original image data at these loci. Background intensity estimation is used in this process as 

it improves the accuracy of the fitting.37 The parameters (and typical values) of the detection algorithm 

are the standard deviation of the LoG filter reflecting average particle size (about 1-3 pixels), the particle 

SNR threshold (about 3-5) used to adjust the initial detection results, and the range of particle radii (1-2 

pixels) used to constrain the Gaussian mixture model fitting. The optimal parameter values for each 

image sequence were estimated by fitting Gaussian functions to isolated particles. Here, the SNR of a 

particle is defined as the mean intensity of the particle divided by the standard deviation of the image 

noise, and therefore we can select the detected particles by SNRs before fitting the Gaussian functions to 

get their peak intensities. It is different from the definition of SNR in this study (where the peak intensity 

is used to calculate SNR) and is usually much smaller than the nominal SNR of each dataset. 

 

METHOD 7: LINKING 

A multiple hypothesis tracking (MHT) based approach is used in the linking stage to find the optimal 

tracks of detected particles.36 It can be formulated and solved as an integer programming problem.38 In 

cases where particles show Brownian motion (Scenario 1), each particle is represented as a state vector 

          , where         denotes the position at time (frame)  , and    is the intensity. Correspondingly, 

the cost function used for linking detected particles to tracks contains two terms: one related to particle 

displacement and the other related to intensity difference, as detailed elsewhere.36 If the intensities of 

the particles do not change that much, the weight for the second term can be set to a very low value 

(0.01), effectively causing intensity information to be ignored. In cases where particles switch between 

Brownian and (nearly) constant velocity motion (Scenario 3), each particle is represented as a state 

vector       
       

 
    , where    

    
 
  is the velocity at time  . To accommodate the abrupt switching 

between the two motion models, an interacting multiple model (IMM) filter is used.39,40 A newly 

developed three-round tracking strategy is used to resolve the problem of (visual) particle splitting and 

merging. In the first round, tracking is performed in the forward time direction, and a merge-detection 

module detects if two or more particles are cluttered. If so, redetection is performed to the cluttered 

regions by considering temporal information. In the second round, tracking is performed in the backward 

time direction to resolve the splitting problem. And in the third round, tracking is performed in the 

forward time direction again to refine the result. The process noise covariance matrix for the two motion 
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models, the model transition probability matrix, as well as the radius of the spatial search window used 

to reduce the number of link candidates, were estimated from tracks obtained by first running a simple 

nearest-neighbor linking algorithm on well-separated particles in the images. 

 

METHOD 7: PARAMETERS 

The user parameters of this method (and typical values) are: 

 Standard deviation (sigma) of the LoG filter (1-3 pixels). 

 SNR threshold of the particles to be detected (3-5). 

 Radius range of the particles to be detected (1-2 pixels). 

 Search radius for linking detected particles (5-10 pixels). 

The exact parameter values for each image sequence in this study are given in Supplementary Table 1. 

 

Note: The large differences in the receptors case (Scenario 3) between the results from the competition 

phase of the study and the results from the verification phase (see Supplementary Table 3) are caused 

by an error in the conversion of the Matlab output data files to XML in the submission stage, for which 

the authors took responsibility. The verified results were not used in the analysis. 

 

METHOD 8 

Authors: Klas E. G. Magnusson, Joakim Jaldén, Helen M. Blau 

Email: klasma@kth.se 

Software: Contact the authors 

Form: Matlab script 

 

METHOD 8: INTRODUCTION 

This method was originally developed to track cells in transmission light microscopy such as bright-field, 

phase-contrast and differential interference contrast (DIC) imaging. The problem of tracking cells is 

different from tracking particles in that the motion of cells may be more complex and unpredictable and 

that cells are more likely to influence each other's tracks. Because of this and the fact that cells, unlike 

the particles in this study, can be distinguished based on their appearance, the algorithm focuses on data 

association and uses a very simple motion model. The particle detection step of this method is based on 

a recently published preconditioning technique.41 For the linking of detected particles into tracks we use 

a modified version of our previous algorithm.42 
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METHOD 8: DETECTION 

For particle detection it is first necessary to estimate the PSF underlying the creation of the images in 

each scenario. It is assumed that in the absence of noise, an image   is obtained by convolution of a 

particle density image   with the PSF  , that is      . Taking the Fourier transform, denoted by 

      , yields              , so that an estimate of the PSF can be found as: 

 

       
    

    
   

 

This estimator is optimal if the noise is additive white Gaussian. In this study, the noise was Poisson, so 

that the estimator was theoretically not optimal for this purpose, but it worked well nevertheless. In 

Scenario 2 (microtubules), the fact that the particles have different orientations was not taken into 

account, and therefore the estimated PSF was an average taken over all orientations. For the creation of 

  in estimating   for a given scenario, a sample image   was taken from the training data together with 

its ground-truth particle positions, and the intensities at the nearest discrete image coordinates around 

these positions in   were set according to the distance to the particle. For example, in 2D, for a particle 

at subpixel position          , with       and            , we set                

  ,                ,                , and              .   and     were 

computed using the fast Fourier transform (FFT) with zero padding. And the estimated PSF was 

truncated to a 41 x 41 pixel matrix (2D cases) or a 21 x 21 x 9 voxel tensor (3D cases). 

 

Assuming the above mentioned PSF-convolution model for the imaging process, the detection algorithm 

uses the following optimization to recover the particle distribution: 

 

                 
                          

 

where         ,         ,            , and   is a free parameter, tuned as described below. 

This is a preconditioning problem with an    penalty to favor a sparse solution.41 The optimization is 

solved using the multiplicative update rule: 
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for all pixels or voxels  . This scheme has been proven to converge to the global minimum.41 For the 2D 

cases, the number of iterations   was limited to 10, after which the result hardly improved for the 

considered images. In the 3D cases, only 5 iterations were performed, to reduce the run time of the 

algorithm. The output of the preconditioning algorithm is a recovered particle distribution image, which 

can subsequently be thresholded to produce a number of detections, or particle candidates, to be 

tracked. We use a global threshold   and consider local maxima above the threshold to be individual 

detections. Even though the true particles are supposed to be point objects, we consider the connected 

component of the thresholded image around each local maximum to be an outline of that detection. 

Whenever there are multiple local maxima in the same connected component, a seeded watershed 

algorithm is applied, with seeds at the local maxima, to break the pixel regions into individual detections. 

In order to obtain subpixel positioning of the particles in the 2D scenarios, parabolas are fit in each 

dimension to the pixel values closest to the maxima in the preconditioned image, and the coordinates of 

the maxima of the parabolas are used as the particle coordinates. In the case of the 3D scenario, 

however, no subpixel particle positioning is done. The free parameter   and the global threshold   were 

optimized by performing a grid search while minimizing the objective function FN+0.5*FP, where FN is 

the number of missed particles and FP the number of false alarms. We chose to put more emphasis on 

FN  than on FP, because our tracking algorithm is more sensitive to missed particles than false alarms. In 

the grid search, we only had to generate the grid explicitly for  , as the objective function can be easily 

evaluated for all thresholds, given the values at the local maxima of the preconditioned image. 

Generally, for higher SNRs, the optimal   will be lower and   will be higher. 

 

METHOD 8: LINKING 

Linking starts with an empty set of tracks and adds tracks iteratively in a greedy fashion that gives the 

largest possible increase to a scoring function based on the particle appearance and motion in the added 

tracks. To find the optimal tracks to add, the algorithm uses a state-space diagram that represents all of 

the different states that a particle can be in, in the consecutive images. In the diagram, there is a state 

associated with every detection, representing the event that the track passes through that particular 

detection. In addition, there is also an idle state for every image, corresponding to the track not being 

present in that particular image. The states related to image    are connected to those of image      by 
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arcs with scores representing the log probability of a particle transitioning between the connected 

states. Arcs that connect two detection states correspond to particle movements. Arcs that go from an 

idle state to a detection state correspond either to the creation of a new track or to the connection of a 

new detection to the end of a preexisting track. Finally, arcs that go from a detection state to an idle 

state correspond either to the termination of a track or to the connection of a preexisting track to the 

end of the new track currently under creation. The idle states in consecutive images are connected by 

arcs that have zero cost, so that multiple track fragments can be added in the same iteration of the 

algorithm. The track fragments will always be in disjoint sets of images, however, as paths through the 

state-space diagram can pass through only one of the states associated with a particular image. 

Previously,42 all of the detection nodes in the diagram related to    were linked to all of the detection 

nodes related to     , but in the implementation used in the present study, only the three highest 

scoring incoming arcs and the three highest scoring outgoing arcs of each node are included. This 

decreases the computational complexity of the algorithm significantly, without affecting the 

performance negatively. 

 

Once the state-space diagram has been created, the problem of finding the highest scoring track to be 

added to the set of preexisting tracks is solved by finding the highest scoring path through the state-

space diagram. This is equivalent to a shortest-path problem, and given that the state-space diagram is a 

trellis graph, it can be solved using the Viterbi algorithm.42 A potential problem is that incorrectly 

constructed tracks can hinder the creation of correct tracks later on. To avoid this, we allow swapping, 

where a preexisting track is broken so that the beginning of the second half is linked to the end of the 

new track currently under creation. When this happens, the Viterbi algorithm switches from extending 

the new track, to appending new states to the end of the first half of the broken track.42 

 

In this study, the motion model used to compute the scores associated with particle movement was 

Brownian motion, where the probability density function of the particle position at time     was taken 

to be a Gaussian centered around the particle position at time  . In the 2D scenarios, the covariance of 

the Gaussian distribution was taken to be a scaled identity matrix, while in the 3D scenario (viruses), a 

non-diagonal covariance matrix was used instead, as there was a correlation between the Cartesian 

components of the particle displacements. The covariance matrices were estimated separately from the 

training data of every image sequence. To compute the scores associated with different particle counts 

in the detections, we trained classifiers to determine how likely detections were to contain different 
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numbers of particles. Here we used a classifier based on Gaussian discriminant analysis, instead of 

multinomial logistic regression as done previously,42 as this turned out to be both more accurate and 

faster. In the 2D scenarios, the features used for classification were the number of pixels in each 

detection, the sum of the preconditioned image taken over these pixels, the axis ratio of the pixel 

regions, the standard deviation of the   and   coordinates of the pixels, and the standard deviation of 

the pixel coordinates weighted by the intensity of the preconditioned image. In the 3D scenario, we used 

only the number of voxels and the sum of the preconditioned image in the voxels. A separate classifier 

was trained on the training data of every image sequence. The probabilities of particles appearing and 

disappearing, required for the scores on arcs connecting detection states to idle states, were estimated 

from the training data of each image sequence separately in this study. 

 

METHOD 8: PARAMETERS 

The user parameters of this method (and typical values) are: 

 Sparseness parameter   in the particle detection step (0-30). 

 Number of iterations in the detection optimization (10 in 2D and 5 in 3D). 

 Global threshold   for selecting relevant local maxima (0-40 intensity units). 

 Probability of particle appearance used for linking (0.04-0.08). 

 Probability of particle disappearance used for linking (0.04-0.08). 

The exact parameter values for each image sequence in this study are given in Supplementary Table 1. 

 

METHOD 9 

Author: Perrine Paul-Gilloteaux 

Email: perrine.paul-gilloteaux@curie.fr 

Software: Contact the author 

Form: ImageJ plugin 

 

METHOD 9: INTRODUCTION 

This method was originally designed to track objects (not necessarily spots) already identified in 2D 

frames and has been applied previously to particle tracking and analysis in high-speed atomic force 

microscopy image series.43,44 The detection part has been specifically designed for this study. 
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METHOD 9: DETECTION 

Different algorithms are used for particle detection in 2D as compared to 3D. In the former case, an 

optional preprocessing step is first applied, consisting in Laplacian-of-Gaussian filtering as proposed 

previously for spot detection,29 which yields a local minimum wherever the correlation with a Gaussian is 

maximum. The output is then inverted and scaled to the full dynamic range of an 8-bit image (values 0-

255). In this study, preprocessing was applied only to image sequences with SNR < 4. The actual 

detection step consists in finding the local maxima, sorting them in descending order of intensity, 

applying a flood-fill algorithm to each of them using a fixed noise tolerance value (a free parameter with 

default value 10), and discarding lower maxima whose fill-regions touch those of higher maxima. This 

algorithm is readily available as the Find Maxima plugin of ImageJ (National Institutes of Health, 

Bethesda, MD, USA).45 The output of the 2D detection step is a list of objects for each time point  , 

defined by their       positions (with pixel precision only), and their peak intensities  . In 3D, on the 

other hand, detection is accomplished by filtering the image stack at each time point with a 3D Gaussian 

(of size       voxels, with           pixels, and        times the distance between slices), 

followed by thresholding at twice the value of the Otsu23 level. The centroid of each 3D connected 

component is then fit to a 3D Gaussian using the maximization of the expectation of a Gaussian mixture 

model (only one Gaussian was used in this study). The output of the 3D detection step is a list of objects 

for each time point  , defined by their         positions (with subpixel precision), and the integrated 

intensity   of their corresponding connected component after thresholding. 

 

METHOD 9: LINKING 

The linking step of the method is based on a modified version of a previously published method.46 It 

minimizes the global energy of associating detected particles over a whole image sequence. The set of 

tracks is initialized using a nearest-neighbor search within a given maximum search radius (a free 

parameter whose value is not very critical but mainly affects the computation speed). For each image 

frame, each detected particle is associated with its nearest neighbor (in terms of Euclidean distance) in 

the next frame. If the nearest neighbor has already been assigned, the two competing associations are 

compared based on Euclidean distance, and the one corresponding to the smallest traveled distance will 

be taken and the other rejected. To complete the initialization, an additional step of linkage of broken 

tracks is performed, by checking that there is no free neighbor at the next frame after the first 

association. After initialization, there can be free particles left, which will be tested in the second part of 

the algorithm. The energy of the resulting particle associations is then computed as follows. Define a 
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detected particle   at time   as the vector   
            , with     in the 2D case, and assume that 

the elements are independent and normally distributed, with variance       
  for         and   

  for  . 

The probability of associating two detections,   
  and     

 
, where   is an integer number of frames 

ranging from 1 to   (the maximum allowed disappearance time), is then given by: 

    
      

 
  

 

           
     

 

 
   

      
 
 
 
      

      
 
    

where the covariance matrix is              
        

        
    

   and     is its determinant. Defining the 

energy of an association as the negative logarithm of its probability: 

    
      

 
         

      
 
   

we compute the global energy of a set of tracks as the sum of the energies of the individual associations. 

In this study we added a term to the global energy to favor longer tracks: 

         
      

  
 

    
 

  

where the summations extend over all tracks   and all relevant time points  ,   is the total number of 

tracks, and   the maximum distance allowed. Minimization of the global energy is done by simulated 

annealing, which proposes and evaluates random changes from a set of possible changes. Changes can 

consist in assigning a detection in a future frame (within the maximum disappearance range) to deal with 

particle disappearance (or misdetection), or making a new association that replaces an existing one, or 

linking two broken tracks. If the energy difference    due to a change is negative, the change is 

accepted. If it is positive, it is accepted with probability              , where      is the temperature 

for iteration  . The temperature starts at          and decreases according to                  . 

This means that even local changes that increase the global energy can be accepted, in particular in the 

first iterations, when the temperature is still high. If the global energy does not decrease, the tracks are 

reset to their previous state, and the next iteration is started. If it does decrease, the changes are all 

accepted, and the iteration count is reset to 0. The algorithm ends after      iterations (a user-definable 

parameter). Notice that if       , the second part of the linking algorithm will not be executed, and 

the result will simply be the output of the initial nearest-neighbor search. In this study, of all resulting 

tracks, only the ones having a length of at least 3 frames were kept. 
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METHOD 9: PARAMETERS 

The user parameters of this method (and typical values) are: 

 Standard deviation (sigma) of the Laplacian-of-Gaussian filter (1.5-2.5 pixels). 

 Tolerance level used in the flood-fill algorithm (20-60 depending on SNR). 

 Search radius used in the nearest-neighbor algorithm (10-15 pixels). 

 Disappearance time allowed in the linking algorithm (1-3 frames). 

 Number of iterations in the simulated annealing algorithm (mostly 100). 

The exact parameter values for each image sequence in this study are given in Supplementary Table 1. 

 

METHOD 10 

Authors: Philippe Roudot, Charles Kervrann, François Waharte 

Email: philippe.roudot@inria.fr 

Software: Contact the authors 

Form: C++ code 

 

METHOD 10: INTRODUCTION 

This method was designed for tracking rotationally symmetric particles frame by frame in 2D image 

sequences. It was applied only to the image sequences of Scenario 1 (vesicles) of the present study. The 

detection step yields only approximate particle positions, estimated using the structure tensor47 and 

optimal histogram based thresholding,48 which are subsequently refined and linked using a Gaussian 

fitting scheme based on iterative reweighted least-squares minimization.49 

 

METHOD 10: DETECTION 

The detection stage deals only with the presence of particles and their approximate positions, since the 

Gaussian fitting scheme described in the linking section provides a refined localization and displacement 

estimate, and detects the disappearance of particles. Particles are detected using a two-step approach. 

First, pixels are classified as potential particle pixels using a gradient-based measure. The measure used 

in this study is based on the so-called structure tensor,47 or second-moment matrix,  whose elements are 

estimated by convolving the image with the first derivative of the Gaussian kernel (    pixel). This can 

be done computationally very efficiently thanks to the separability of the Gaussian. The tensor is 

integrated within a small window (typically     pixels) and the resulting smallest eigenvalue is used as 

classification measure. If the current frame is not the first frame, pixels belonging to the support of a 
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particle successfully tracked by the linker, are not processed. Potential new particle positions are 

selected as the   pixels having the highest scores for the classification measure while respecting a 

distance of 8 pixels between these highest pixels. Here,   represents an overestimation of the expected 

number of particles, which is a parameter of the algorithm and was set to 120% of the corresponding 

values for the low, mid, and high density images in this study. In the second step of the algorithm, the 

initially detected particle pixels are further analyzed, in order to discriminate between correct and 

spurious detections. This is done by computing the threshold   that best separates the two populations 

in terms of their scores for the used classification measure. The optimal threshold is estimated from the 

histogram   of the scores by minimizing the Matusita distance:48,50 

         
 
            

          
      

 
 

      

            
          

      
 

    

   

  

Pixels with values above the threshold are taken as the true particle positions, up to pixel precision. A 

refinement of the detected particle positions is performed in the linking stage. 

 

METHOD 10: LINKING 

The linking of detected particle positions between successive frames, as well as the refinement of these 

positions, is accomplished by a Gaussian fitting scheme. Given an initial particle position    in frame  , 

the refined (subpixel) position and size is given by the following M-estimator: 

               
      

                        

       

 

where    denotes the Gaussian with variance    representing the shape of the particle and centered at 

the origin,   denotes its amplitude,   is the background level which is considered locally constant, and 

      is a     pixel window around   . At frame  , the amplitude is taken as                in 

the case of tracking, and as            in case of position refinement. Minimization is accomplished 

by an iteratively reweighted least-squares (IRLS) procedure. The weight function    is taken to be the 

Leclerc function               
      with scale parameter         such that outliers that do not 

respect the assumed Gaussian error distribution are weighed down. Here,      is defined as50      

                               , where              denotes the median value taken over all 

positions within the window        and      is the set of residuals obtained by least mean square 
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estimation. In this study, the parameters were initialized as follows:   was set to 2,   was set to the 

minimum local value in a     pixel window, and   was fixed to 3. 

 

METHOD 10: PARAMETERS 

The user parameters of this method (and typical values) are: 

 Standard deviation (sigma) for computing the Gaussian first derivatives (1 pixel). 

 Window size for structure tensor integration and Gaussian fitting (7 x 7 pixels). 

 Initial standard deviation used in the Gaussian fitting algorithm (2 pixels). 

 Expected number of particles (120% of the specified numbers in this study). 

The exact parameter values for each image sequence in this study are given in Supplementary Table 1. 

 

METHOD 11 

Authors: Ihor Smal and Erik Meijering 

Email: i.smal@erasmusmc.nl 

Software: Contact the authors 

Form: Java module 

 

METHOD 11: INTRODUCTION 

This method was designed for general purpose tracking of fluorescent particles exhibiting random-walk 

or directed motion with possible switching between these modes of displacement. It was developed 

specifically for this study and has not been published before but is largely based on existing concepts. 

The detection step combines wavelet-based detection16 and Gaussian fitting.51 The linking of detected 

particles is done using an adapted version of an existing multiframe assignment framework.52 

 

METHOD 11: DETECTION 

To efficiently localize particles of interest in the noisy images and deal with spurious detections, two 

detection algorithms were used, which were chosen depending on the scenario. Both algorithms make 

use of a preprocessing step to find candidate locations. In this step, each image in a sequence is first 

transformed using the multiscale isotropic undecimated wavelet transform,16 with three scales. Next, the 

wavelet coefficients of the second and third scales below a threshold (given below) are discarded, and 

the corresponding retained coefficients are summed to yield a reconstructed image with reduced noise 

and low-frequency background variations. In the first detection algorithm, applied to Scenarios 1 and 3, 
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the local maxima in the resulting images are taken as the candidate positions. To discriminate between 

true particles and noise, a 2D Gaussian fitting algorithm51 is applied to the original images at these 

maxima, which yields for each candidate position its subpixel coordinates      , amplitude  , and size, 

expressed as the standard deviation   of the Gaussian fit. All positions for which               and 

              are then accepted as true particle positions. Typical values used for the parameters 

(depending on the SNR) were       3-8,       150,       0.3-0.45,       2.0-2.5, and thresholding 

of the wavelet coefficients in the preprocessing step was done at a level of 3.0-3.2  , where    is the 

standard deviation of the wavelet coefficients for a given scale. For the second detection algorithm, 

applied to Scenario 2, where the particles were larger and asymmetrical, typical threshold values were 

2.0-3.5  . In the reconstructed image, the algorithm then finds the connected components (of pixels 

with intensities larger than 0), and classifies them as true particles (if they satisfy a minimum size 

requirement) or spurious detections (otherwise). The subpixel coordinates of the former are computed 

as the center of mass of the retained connected components in the reconstructed image. 

 

METHOD 11: LINKING 

For the linking of detected particles, an existing multiframe assignment framework52 was adapted by 

introducing application specific cost functions, which measure how similar two detections from different 

frames are. In a simple two-frame assignment case, the detections from one frame are "competing for" 

the detections from the subsequent frame, and the optimal solution is characterized by a minimal total 

cost. However, in the case of touching or crossing tracks, when two particles come very close to each 

other, the detection algorithm will often provide only one detection, to be assigned to both tracks at the 

same time, which violates one of the basic assumptions of common two-frame assignment algorithms 

(such as bipartite matching, the Auction algorithm, and the Hungarian algorithm) that each detection can 

be assigned to only one track. To deal with this, as well as temporary disappearance of particles (up to 

two frames), we considered the linking step as a four-frame assignment problem, to be solved 

sequentially when going through the frames of the entire image sequence. The proposed cost functions 

  ,   , and    used in the assignment algorithm52 reflect the three different modes of motion (random 

walk, near-constant velocity, and switching between these two modes) in the three considered scenarios 

in this study (Scenario 1, 2, and 3, respectively). Cost    is the Euclidean distance between position   
  of 

detection   in frame   and position     
 

 of detection   in frame    . Cost    is the Euclidean distance 

between position     
 

 and the position predicted from linear extrapolation of the last displacement: 

Nature Methods: doi:10.1038/nmeth.2808



  
      

      
  . And cost    is a weighted combination of    and   , given as          

             , where            
      

    and            
      

    
 
   . 

 

METHOD 11: PARAMETERS 

The user parameters of this method (and typical values) are: 

 Threshold of the wavelet coefficients (2-4 times the standard deviation of the coefficients). 

 Minimum intensity of a fitted particle to accept it as a true detection (3-25 units). 

 Maximum intensity of a fitted particle to accept it as a true detection (150-200 units). 

 Minimum size of a fitted particle to accept it as a true detection (a standard deviation of 0.3-0.6 

pixels in Scenarios 1 & 3 and an area of 5-15 pixels in Scenario 2). 

 Maximum size of a fitted particle to accept it as a true detection (a standard deviation of 2.0-2.5 

pixels in Scenarios 1 & 3 and an area of 200 pixels in Scenario 2). 

The exact parameter values for each image sequence in this study are given in Supplementary Table 1. 

 

METHOD 12 

Author: Jean-Yves Tinevez and Spencer L. Shorte 

Email: tinevez@pasteur.fr 

Software: http://fiji.sc/TrackMate 

Form: ImageJ/Fiji plugin 

 

METHOD 12: INTRODUCTION 

This method was inspired by the particle tracking method of Jaqaman and colleagues.53 It considers the 

linking as a two-step linear assignment problem and has the power to close gaps by first forming low-

cost track segments and then linking these segments. The method takes as input a set of detected 

particles with corresponding features to be used in the linking-cost minimization algorithm. In our 

implementation, particle detection is accomplished using an existing approach based on difference-of-

Gaussian filtering and parabolic interpolation.54 

 

METHOD 12: DETECTION 

For the detection of particles a blob detector based on the difference of Gaussians was used.54 Given   

the approximate expected particle diameter, determined by inspection of the image data, two Gaussian 

filters, with standard deviation             and         respectively, are applied individually to 
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each image in a sequence. The result of the second filter (largest  ) is then subtracted from the result of 

the first filter (smallest  ). This yields a smoothed image with sharp local maxima, which are taken to be 

the candidate particle locations. The intensities at these locations are used as a quality feature of the 

candidate particles. If two candidates are found to be closer than the expected radius    , the one with 

the lowest intensity is discarded. To obtain subpixel localization of each detected particle, a parabolic 

interpolation scheme is used.54 The quality feature is also interpolated using this scheme. Finding local 

maxima creates a large number of spurious detections. These are discarded by applying a threshold on 

the quality feature. The value of this threshold is set manually to match the SNR of the input image. 

Thresholded detections are then retained for subsequent particle linking. 

 

METHOD 12: LINKING 

The linking of detected particles was considered as a linear assignment problem (LAP) and solved using 

the method of Jaqaman and colleagues,53 with modifications in the calculation of the linking costs. In this 

method, linking is performed in two steps. First, track segments are created from frame-to-frame 

particle linking, and then the track segments are linked to achieve gap closing. The mathematical 

formulation used for both steps is the same: a cost matrix is assembled containing all possible 

assignments and their corresponding costs, and the actual assignment is obtained by solving the matrix 

for minimal total cost. The two steps are described here in more detail. 

 

In the first step, for each two consecutive frames at   and    , each detection in the first frame is 

offered to link to any detection in the next frame, or not to link. This takes the form of an       

      matrix, where   is the number of detections in frame  , and   the number of detections in 

frame    . The matrix can be divided into four quadrants: 1) the top-right quadrant (   ) contains 

the costs for linking a detection   in frame   to a detection   in frame    ; 2) the top-left quadrant 

(   ) contains the costs for a detection   in frame   to not create a link with next frame (yielding a 

segment stop); 3) the bottom-right quadrant (   ) contains the costs for a detection   in frame     

to not have a link with the previous frame (yielding a segment start); 4) the bottom-left quadrant (  

 ) is an auxiliary block that is mathematically required by the LAP formalism,53 and is built by taking the 

transpose of the top-right quadrant, replacing all non-blocking costs by the minimal cost. The solution to 

the resulting LAP can be found in polynomial time using the Munkres algorithm.55 
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In the original paper,53 the costs in the matrix depend on the distance between detection   in frame 

    and the position of detection   from frame   propagated into frame     using Kalman filtering, 

possibly weighted by the difference in intensity between the two detections. In the implementation used 

in the present study, Kalman filtering is not employed, but the user is offered to tune the costs by adding 

features. Specifically, the user is asked for a maximum allowed linking distance, and for a series of 

features, with corresponding weights. For two detections that may link, the distance   between them is 

calculated, and if it is larger than the maximum allowed distance, the link is forbidden and the cost is set 

to infinity (the blocking value). If not, then for each feature   in the map, with values    and    for the 

two detections, a penalty is calculated as                    , where   is the weight associated 

with the feature. This expression is such that     if the two feature values are the same,     if 

    and one of the feature values is twice the other, and     if one of the values is five times the 

other. All penalties are then summed to yield        and the cost is set to         . The costs 

in the top-left and bottom-right quadrants of the matrix, associated with track segment termination and 

initiation, are all set to the blocking value, except along the diagonal, where the costs are set to 

             , with   the costs in the top-right quadrant.53 Without additional features, the   for 

any two detections is simply the square of   (since     in that case), and the LAP solution is the one 

that minimizes the sum of squared distances, which corresponds to the case of Brownian motion.56 

Adding features and weights allows to provide a more detailed definition of particle "resemblance", and 

which possible links are to be favored, which may improve tracking robustness. In this study, however, 

this was done only for Scenario 2, where the particles display an elongated morphology, and their 

orientations change only marginally from frame to frame. This was exploited by fitting an ellipse to the 

intensity distribution around a detection, yielding the preferred orientation of the particle, which was 

used as a linking feature. 

 

The frame-to-frame linking step described above is repeated for all consecutive frame pairs in an image 

sequence. This yields a series of non-branching track segments. A track segment may start or stop 

because of a missing detection, or because of a merge or split event, which is not taken into account at 

this stage. In the second step, track segments are offered to link with each other, using the same LAP 

framework.53 A new cost matrix is generated for this purpose, which reflects the following events: 1) 

linking of the end of a track segment to the start of any other track segment (a gap-closing event, where 

a link is created typically over two detections separated by a missed detection); 2) linking of the start of a 

track segment to any detection (except start or end) of any other track segment (a splitting event, where 
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a track branches into two subtracks); 3) linking the end of a track segment to any detection (except start 

or end) of any other track segment (a merging event, where two tracks merge into one); 4) no linking of 

any detection of any two track segments. As before, the way the costs are calculated was modified, 

reusing the feature penalties framework described above. In addition, the user must provide a maximal 

time difference over which linking will be considered. In this study, however, only gap-closing events 

were considered, and in some cases this was not even necessary. 

 

METHOD 12: PARAMETERS 

The user parameters of this method (and typical values) are: 

 Expected particle diameter for detection (3-5 pixels). 

 Quality feature threshold to reject spurious detections (0.5-4.5). 

 Maximum allowed distance in linking detected particles (10-15 pixels). 

 Orientation feature weight in linking elongated particles (10). 

 Maximal time difference over which gap closing is considered (3-4 frames). 

The exact parameter values for each image sequence in this study are given in Supplementary Table 1. 

 

METHOD 13 

Authors: Joost Willemse, Katherine Celler, Gilles P. van Wezel 

Email: jwillemse@biology.leidenuniv.nl 

Software: Contact the authors 

Form: ImageJ plugin and Matlab script 

 

METHOD 13: INTRODUCTION 

This method was designed specifically for this study and has been applied to the quantitative analysis of 

dynamic protein localization in Streptomyces.57 The method resembles the classical method of Crocker 

and Grier.56 After basic image filtering the actual detection is performed by thresholding on intensity and 

particle size. Linking of detected particles is based on nearest-neighbor searching but with the possibility 

to deal with temporary disappearance of particles. 

 

METHOD 13: DETECTION 

To detect particles in the images, several filtering steps are applied to enhance the contrast between 

natural autofluorescence and the observed particle fluorescence. The initial step for noise reduction is a 
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Gaussian filter (    pixel), which keeps the particles intact while the noise is diffused throughout the 

image. After this, two processing steps are possible, depending on the SNR in the image. For high SNRs, a 

top-hat filter is applied to detect and emphasize foci that are brighter than the background. The result is 

an image in which the background has been equalized and the foci of interest have been intensified. 

Based on this image, a thresholding procedure is applied, in which the cut-off intensity (above which 

objects are considered true particles) can be manually chosen by the user. Setting the threshold correctly 

is a vital part of the algorithm. In the competition, the chosen threshold values were 30 (for SNR = 7), 20 

(for SNR = 4), and an automatically determined level (using the auto-thresholding function of ImageJ)  

with a constant added (for SNR = 1 or 2, where the constant was 10 for high-density, 12 for mid-density, 

and 15 for low-density images), respectively. Thresholded objects that are either too large (in this study 

500 pixels or larger) or too small (less than the expected minimum size of typically 6-10 pixels depending 

on SNR) are filtered out. Objects located close to each other are separated using a watershed-based 

splitting operation, using the Euclidean distance transform. For low-SNR images, a similar approach is 

taken, leaving out the top-hat filter. In noisier images, this levels the background only slightly compared 

to the objects of interest, since these generally consist of several intensity peaks in nearby pixels. Finally, 

the subpixel position of each thresholded particle region is taken to be the center of mass. 

 

METHOD 13: LINKING 

To track detected particles from frame to frame, a modified nearest-neighbor algorithm is used. Initially, 

the image space is divided into blocks (of tunable size, in this study 1 pixel in 2D cases, and 1 voxel in 3D 

cases), using a regular grid. Starting with the first frame, each particle is labeled according to the block 

containing its coordinates. In the next frame, the same grid is created, and the particles in that frame too 

are labeled according to their corresponding block. Then, each particle is linked with the particle in the 

previous frame that is nearest in its neighborhood, defined by the surrounding blocks (initially     block 

in each dimension). If multiple particles are detected, the closest one is chosen, and if none is found, the 

neighborhood is iteratively extended in all dimensions (to     blocks,      , with   a user-defined 

maximum range, typically 10). If the particles cannot be tracked within this distance, a gap-closing step is 

applied. This ensures that if particles disappear in a certain frame, and then reappear again, tracking 

continues. Gap closing is performed by running the tracking procedure on frame    , and then 

continuing backwards along frames until the particle is "found" again. Thus in a sense, particles are not 

tracked forwards, but backwards. The user may choose how many frames backwards to search. In this 

study the backwards tracking parameter was set to 3 frames. Disappearing of particles may occur due to 
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noise or if a particle moves out of focus. Newly appearing particles are labeled as new objects and 

tracked thereafter in subsequent frames. If particles are tracked forward to the same particle in the next 

frame, the event is identified as a fusion. This is done based on particle area. It was estimated that a 

fusion consisting of two particles has 1.5 times the average area of a single particle, and that a fusion of 

three particles has 1.5 times the area of a fusion of two particles. These larger objects can be tracked 

back to two or three parents if these are detected in the neighborhood. Splitting particles are also 

detected, with both daughter particles tracking back to the same parent based on directionality. This is 

based on the assumption that on short time scales, tracks follow a straight path. Finally, it is possible in 

this method to eliminate single detections or short tracks. In the present study, single detections and 

tracks shorter than 3 frames were filtered out. 

 

METHOD 13: PARAMETERS 

The user parameters of this method (and typical values) are: 

 Standard deviation (sigma) of the Gaussian filter for noise reduction (1 pixel). 

 Intensity threshold (20-30 units or auto-computed plus an offset of 10-15 units). 

 Minimum size of the thresholded objects (6-10 pixels). 

 Maximum range within which to find nearest neighbors (10 pixels). 

 Backward tracking range within which to close gaps (3 frames). 

 Minimum track length in numbers of frames (3 frames). 

The exact parameter values for each image sequence in this study are given in Supplementary Table 1. 

 

METHOD 14 

Authors: Han-Wei Dan and Yuh-Show Tsai 

Email: dnadann@gmail.com 

Software: Contact the authors 

Form: ImageJ plugin 

 

METHOD 14: INTRODUCTION 

This method has been published previously and used for tracking of secretory vesicles with various 

dynamic properties in living cells.58,59 More details of the method can be found in the cited papers. The 

mentioned parameters of the method were manually tuned per image sequence in this study. 
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METHOD 14: DETECTION 

Prior to particle detection the images are first processed using a Gaussian filter (with    0.5 pixel) in 

order to reduce noise without compromising the particle signal. Next, a Wiener filter is applied to deblur 

the images and to restore image resolution.60 In the filtered images, pixels with a value lower than the 

minimum intensity of the foreground (a tunable threshold typically set to 10-20) are identified as 

background, and set to zero. To enhance particles in the resulting images, a top-hat transformation is 

applied,61 using a disk-shaped structuring element (with tunable radius typically set to 2-6 pixels). The 

particle regions are then detected by thresholding (with a fixed threshold value of 1) to obtain the 

segmented (binary) images. A morphological opening can be applied to cut connected particles. For each 

component in the resulting segmented images, the algorithm extracts various features to be used in the 

linking step, including area, maximum intensity, and coordinates. 

 

METHOD 14: LINKING 

Two methods are used to link detected particles from frame to frame. The first uses a simple nearest-

neighbor approach. For each particle in frame  , the particles in frame     with a Euclidean distance of 

at most the maximum allowed tracking distance (a parameter of the algorithm typically set to 5-8 pixels), 

are considered as candidates for linking. To determine the best match, the similarity between the 

particle and each of the candidate particles is calculated, based on distance, area difference, maximum 

intensity difference, and difference in direction compared to the displacement of the particle from     

to  .59 If no suitable candidate can be found using the nearest-neighbor approach, a Kalman filter is 

applied, which predicts a possible position, and the described search for the best matching particle in the 

next frame is repeated starting from that position. The tracking method is essentially a 2D method. 

Tracking in 3D image sequences is done by first recording for each pixel the slice number having the 

maximum intensity, then using the average intensity projection to perform tracking in 2D and finding the 

centroid       particle positions, and finally taking for each particle the recorded slice number at the 

nearest pixel position as the   coordinate of particle. 

 

METHOD 14: PARAMETERS 

The user parameters of this method (and typical values) are: 

 Standard deviation (sigma) of the Gaussian filter for noise reduction (0.5 pixel). 

 Intensity threshold for detection after image preprocessing (10-20 units). 

 Structuring element radius of the top-hat transform (2-6 pixels). 
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 Maximum linking distance in the nearest-neighbor tracker (5-8 pixels). 

The exact parameter values for each image sequence in this study are given in Supplementary Table 1. 
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Supplementary Note 2: Simulated Image Data Sets 

 

This document provides a detailed description of the image data used in this study to objectively 

evaluate the performance of the particle tracking methods. The actual data used in the training phase 

and the competition phase of the study can be downloaded from the website, as described below. The 

software developed to generate these data is described in Supplementary Note 4. 

 

INTRODUCTION 

An exact and objective evaluation of particle tracking methods requires a quantitative rather than a 

qualitative assessment of the tracking results. In turn, quantitative assessment requires the availability of 

the ground truth of the relevant particle properties captured by the image data. For real biological image 

data, this information is not available. At best, an estimate of the true particle positions and labels at 

each time point can be obtained from expert human observers, based on visual detection and manual 

annotation of the images. Since many biological studies today still involve some form of manual particle 

tracking,1 it may seem sensible to compare the output of computational tracking methods with manually 

obtained reference data. However, there are at least three problems with this. First, the use of manual 

reference data reintroduces subjectivity, and requires dealing with intra- and inter-observer variability.2,3 

Second, closely related to this, it has been demonstrated previously that human observers may easily 

produce inferior results compared to computational methods.3-6 Why compare with humans if we want 

computational methods to do a better job in the first place? Third, the high volume and content of the 

image data often far exceeds the capacity of human observers to track everything, forcing them to focus 

on only a limited subset of the data, thereby potentially introducing bias.6 For these reasons, the use of 

simulated test image data has become commonplace in the field.7-18 Not only does it allow for objective, 

consistent, and unbiased evaluations, it also allows to independently analyze, in a fully controlled 

fashion, the different factors affecting tracking performance. Therefore, similar to early evaluation 

studies,19,20 the present study was based on simulated image data. 

 

SIMULATED IMAGE DATA 

The appearance of particles in real biological image data is determined by many factors. These include 

the particular molecular complex studied, sample preparation (including labeling), microscope choice 

and settings, and detector (CCD or PMT) settings, all of which may potentially affect the performance of 

particle tracking methods. The space spanned by all imaging variables is very high-dimensional and 
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would correspondingly require a very large set of sample image data to investigate exhaustively. To 

make the study feasible, we focused on three key factors that in our experience have the largest 

influence on tracking performance, and we fixed other variables to commonly used, practical values. The 

three factors are: 1) particle dynamics (representing a biological scenario), 2) particle density (the 

number of particles in the field of view), and 3) particle signal (relative to noise). Here we provide further 

motivation for the choices made. The next section summarizes the image data set. 

 

FACTOR 1: PARTICLE DYNAMICS 

An important aspect of any particle tracking method is the ability to deal with a range of biological 

scenarios. Four different scenarios were simulated in this study, which we believe represent a wide 

variety of studies. Each scenario captured one particular type of particle dynamics and shape. In this 

study we focused on punctate objects (particles with dimensions much smaller than or on the order of 

the optical diffraction limit), which implies that shape is well modeled by the point-spread function (PSF) 

of the microscope. Scenario 1 (nicknamed "Vesicles") simulated particles showing Brownian (random 

walk) motion, imaged in 2D+time using a widefield microscope. This is representative of normal 

diffusion, which occurs in many cellular processes.21-23 Scenario 2 ("Microtubules") simulated particles 

showing directed (near-constant velocity) motion, imaged in 2D+time using a confocal microscope 

(single plane mode). This is the only scenario where particles were modeled to be slightly elongated 

instead of spherical, with elongation in the direction of motion, representative of microtubule tips.24-26 

Scenario 3 ("Receptors") simulated particles switching between Brownian and directed motion models 

(with fixed probability given below), imaged in 2D+time using a confocal microscope (single plane mode). 

This type of dynamics may be observed with, for example, various types of receptor and motor 

proteins.21,27 Finally, Scenario 4 ("Viruses") also simulated particles switching between Brownian and 

directed motion models, but moving roughly in the same direction, and imaged in 3D+time with a 

confocal microscope (stacks mode). This scenario is representative of, for example, the entry of viruses 

and their directed transport by motor proteins along distinct cytoskeletal tracks.28,29 

 

In this study, we simulated fluorescence microscopy imaging, using either a widefield or a confocal 

microscope as indicated above, since this is most commonly used in live-cell studies of intracellular 

dynamic processes.30-32 This means that particles show as bright spots (relative to a darker background) 

as a result of incoherent light emitted by fluorescent labels. The imaging process can thus be accurately 

modeled as a convolution of the emitted light field with the diffraction-limited microscope PSF (assumed 
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to be space invariant).33,34 For widefield imaging, the classical model of a possibly defocused optical 

imaging system was used,35 extended to include spherical aberrations due to refractive index 

mismatches.36,37 Numerical computation of the model was accomplished using the fast Fourier transform 

(FFT) and fixing the model parameters to the following values: numerical aperture of the objective lens 

NA = 1.4 (oil immersion), emission wavelength    520 nm (green fluorescent light), refractive index of 

the immersion medium     1.515 (oil), and specimen refractive index     1.33 (watery substance). In 

the case of confocal imaging, the PSF is defined as the convolution of the widefield PSF with a pinhole 

model, the outcome of which we approximated by taking the squared magnitude of the widefield PSF 

model. This corresponds to using a very small pinhole and taking the excitation and emission 

wavelengths to be approximately equal. Alternatively, the confocal PSF can be approximated very 

accurately using Gaussian profiles.38 With this in mind, and in order to simplify the calculations, we 

modeled the elongated particles in Scenario 2 directly by non-isotropic Gaussian profiles. Specifically, the 

basic model used was a 3D Gaussian profile with physical scales              and              

    as used previously by others,39 and with        . For each particle, at each time point, this profile 

was rotated in-plane to point in the direction of the velocity vector, the latter of which was initialized 

with zero  -component in the first time point of each image sequence. While in the other scenarios the 

pixel size was fixed to a practically realistic value of 67 nm, the pixel size in Scenario 2 was reduced to 50 

nm, to "stretch" the particles to similar size (in pixels) as observed in real images of microtubule tips. The 

distance between optical planes in the 3D scenario was fixed to 300 nm. 

 

The dynamics models of the particles in the different scenarios were implemented as follows. For every 

particle, going from the current time point to the next, Brownian motion was simulated by sampling 

from a normal (Gaussian) distribution centered at the current position and with standard deviation     

2 pixels in Scenario 1 and 0.6 pixels in Scenarios 3 and 4. Directed motion was simulated as near-constant 

velocity with small random accelerations to allow deviations from a straight path. Concretely, for every 

particle, the position in the next time point was computed as the current position plus the displacement 

dictated by the current velocity vector, and an additional probabilistic change in the position as well as in 

the velocity vector by drawing from a multivariate normal distribution with covariance matrix 

                          for each coordinate.40 The values of the parameters were set as follows: 

variance of the position noise      1/3, covariance of position and velocity noise          1/2, 

variance of the velocity noise      1, and influence factor    0.6 in Scenario 2 and 1.25 in Scenarios 3 

and 4. During simulation the velocity was kept in (clipped to) the range from       3 to       7 pixels 
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per frame in Scenario 2 and from       2 to       6 pixels per frame in Scenarios 3 and 4. Finally, 

switching between (1) Brownian and (2) directed motion was modeled as a Markov chain with 

probability matrix                        . The probabilities were set to the following values:      

0.90,      0.10,      0.15,      0.85. In Scenario 4, in order to make all particles move roughly in the 

same direction, the velocity vector was reset to a fixed velocity vector after every switch from Brownian 

to directed motion. In all scenarios, motion was simulated in 3D, and imaged in either 2D (single plane) 

or 3D (stacks) over time as indicated, thus simulating the possibility of particles moving out of focus and 

changing appearance accordingly. All particles moved independently, that is particle interaction 

(splitting, merging, or any type of affection) was not modeled. The mentioned parameter values were 

chosen empirically to yield data visually mimicking real biological data from the different scenarios. Using 

these parameter values, and assuming a typical imaging rate of 1 frame per second (60 frames per 

minute), we observed the following mean particle velocities in the simulated data, which correlate well 

with measured velocities in experimental studies of real data (we cite example studies):     μm/min in 

Scenario 1 (certain membrane proteins41),     μm/min in Scenario 2 (typical microtubule growth 

rates26),      μm/min in Scenario 3 (for example T-cell receptor dynamics42), and      μm/min in 

Scenario 4 (various viruses43). For the switching between Brownian and directed motion we used similar 

values for the probability matrix parameters as in a previous study.44 

 

FACTOR 2: PARTICLE DENSITY 

The second factor that can be expected to have a large influence on tracking performance is the density 

of the particles in the scene: the higher the density, the higher the ambiguity of the data, as particles 

increasingly approach and cross each other, or even produce clutter. In this study, the field of view was 

fixed (to 512 by 512 pixels in-plane and with 10 planes in the 3D scenario), so that we may express 

density simply in terms of the number of particles. For each of the four biological scenarios described 

above, three levels of particle density were considered: low density (    100 particles), mid density 

(    500 particles), and high density (    1000 particles). For Scenario 2, which simulated somewhat 

larger particles (naturally resulting in a visually denser image), the numbers of particles were chosen a bit 

smaller, yielding more realistic data according to our expert biologists. To further increase the degree of 

realism, the exact number of particles in each case was governed by random processes. Specifically, 

starting with the target number of   particles distributed equally and independently over the field of 

view by drawing positions from a uniform distribution, particle disappearance was implemented as a 

Bernoulli process, with a fixed probability of    0.05 for each particle to disappear at each time point. 
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In addition, particles could disappear simply by moving out of the field of view. In either case, the 

corresponding tracks were terminated after disappearance (the possibility of reappearance was 

excluded). At each time point, the number of newly appearing particles was sampled from a Poisson 

distribution, with mean equal to the target number of particles times the probability of disappearance: 

     . The positions of new particles were again drawn from a uniform distribution (independent of 

existing particles) and were allowed to be initially located outside the field of view (both laterally and 

axially) in order to simulate the entry of particles into the field of view. On average, particle 

disappearance and appearance compensated each other. In the end, of all generated tracks, only those 

lasting for at least 4 frames were retained. Due to the random (dis)appearance of particles, the total 

number of tracks generated per image sequence (with a fixed length of 100 frames) was about six times 

higher than the average number of particles per frame. 

 

FACTOR 3: PARTICLE SIGNAL 

The third aspect known from previous studies15,19,20 to have a major impact on particle detection and, 

consequently, on tracking performance, is the particle brightness or signal strength in the image relative 

to the background and the noise level. This experimental condition is conveniently summarized as the 

signal-to-noise ratio (SNR). Different definitions of SNR exist in the literature. While signal is commonly 

defined as the difference (contrast) between the peak object intensity    and the local mean background 

intensity level   , different choices are sometimes made regarding the noise. Since we are simulating 

fluorescence microscopy imaging, which is a photon counting process characterized by Poisson statistics, 

the noise is given by the square-root of intensity, which is (much) larger within a bright object as 

compared to the darker background. In contrast with other noise sources (thermal, readout, 

quantization), which can be reduced to be negligible in practice, photon noise is unavoidable and is the 

dominant noise source to be modeled.45,46 Following earlier studies,7,15,19 we therefore employed the 

definition SNR =            , and we set the mean background level    to a value in the range of 10 to 

20 photons per pixel (a randomly selected and fixed value per data set) to represent detector noise. For 

each scenario, and for each density level, image sequences were generated at four SNR levels. Since SNR 

= 4 is known to be a critical level at which various popular methods start to break down,15,19 we selected 

this level and added one considerably higher level of SNR = 7 that should be relatively easy for all 

methods, one considerably lower level of SNR = 2 that is representative of many practical live-cell 

imaging experiments, and an extremely low level of SNR = 1 to challenge even the best algorithms. Since 
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particles may move out of focus and thus lose intensity, a given SNR level indicates the maximum 

possible SNR, corresponding to particles that are in-focus. 

 

IMAGE DATA SETS 

The four scenarios, times three density levels, times four SNR levels, amount to a data set consisting of 

48 image sequences, totaling 4 GB of data (with quantization of 8 bits/pixel in all cases). The software 

developed for this study (see Supplementary Note 4) is able to automatically generate all 48 image 

sequences for a user-given choice of the seed value initializing the various random processes involved: 

picking the initial positions of the particles, computing the new positions and (in the case of directed 

motion) the velocities of the particles at each time point, switching (where applicable) between 

Brownian and directed motion, determining whether to terminate or continue a particle track, how 

many and where new particle tracks are to be initialized, and the image noise. Each seed value yields a 

unique instance of the image data set, which is totally different from any other instance in terms of the 

details, but equivalent in terms of statistics. In the training phase of the study, participants were given 

one instance of the data set, together with the basic information listed in Table 2 of the main paper, and 

the ground truth particle positions to train, improve, and test their algorithms. In the actual competition 

phase of the study, participants were given another instance of the data set, without the ground truth, 

and were asked to submit their tracking results to the independent evaluator (M.M.), who was not a 

contestant and the only one to know the ground truth. An impression of the image data (from the 

training phase of the study) can be obtained from Figure 1 of the main paper. Corresponding videos of 

the sample images in that figure are shown in Supplementary Videos 1-10. 

 

The actual data used in the training and in the competition phase can be downloaded here: 

URL: http://bioimageanalysis.org/track/ 

Login: anonymous@bioimageanalysis.org 

Password: erfg14d3 
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Supplementary Note 3: Performance Measures 

 

This note provides a detailed description of the measures used in this study to quantitatively and 

objectively evaluate the performance of the particle tracking methods. The software developed to 

compute these performance measures is described in Supplementary Note 4. 

 

INTRODUCTION 

The problem of performance evaluation of tracking methods occurs in many fields, including computer 

vision, aerospace applications (radar tracking, navigation, traffic control), and biomedical research. 

Despite much consideration in the past decades,1-3 there is as yet no single, well-accepted method to 

evaluate overall tracking performance. This can be explained by the fact that different application areas 

may be concerned with different aspects of track estimation and, consequently, may require different 

performance measures. In particular, measures proposed in other fields are often not applicable to 

biological particle tracking, where one is faced with a priori unknown and varying numbers of particles, 

whose identities are to be preserved throughout the image sequence.4,5 

 

A key aspect of comparing a set of estimated objects to a set of known but possibly a different number 

of ground-truth objects, is the pairing of their elements: which element in the former should be 

compared to which element in the latter? A sensible approach to solving this problem for sets of 

positions is the use of optimal subpattern assignment.6,7 This concept has recently also been extended to 

sets of labeled object tracks.8 The evaluation of particle tracking methods in the present study was based 

on the same underlying idea, as described in detail below. Nevertheless, in order to have a complete and 

intuitive characterization of the performance of the different methods, a set of complementary 

performance measures was used, rather than a single measure. 

 

TRACK DEFINITION 

A track is a temporal series of subsequent spatial positions. The spatial position at a given time point 

    is a vector                      , with     ,     , and      the coordinates at this time along 

the respective axes of the image. In a 3D image sequence, all three coordinates may vary, while in a 2D 

image sequence, the   coordinate is fixed. A track   existing from time         to time            is 

therefore defined as the set                          . Missing positions in the interval              are 

marked as non-matching and are penalized as described below. 
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DISTANCE BETWEEN TWO TRACKS 

For the purpose of measuring the distance between two tracks, the following gated Euclidean distance 

between two positions       and       is defined: 

                                       

with        the standard    norm of   , and      the gate. The rationale behind the use of the gate   is 

to limit the penalization of tracks that separate. When two tracks are more than   apart at any time  , it 

is indeed considered that their positions do not match at that time point. In that case, it is irrelevant to 

measure the actual distance between these positions, and a fixed penalty   is used instead. In the 

context of this study, the value of   was set to 5 pixels, which, for the imaging parameters simulated in 

our data (see Supplementary Note 2), was on the order of the Rayleigh criterion.9,10 In other words, the 

required minimum distance between diffraction-limited particles to allow visual separation (Rayleigh), 

was taken as the maximum tolerable distance for the particle tracking methods. 

 

It may happen that two tracks have different temporal supports. For instance,    may exist at a given 

time  , while    does not. In that case, we consider that the tracks do not match at that time point, and 

the distance between the tracks is defined to be equal to the penalty  . If neither of the two tracks exist 

at time  , their distance is defined to be 0. This allows for the following compact formulation of the 

distance   between any two tracks    and   : 

                          

   

   

 

where   is the length (the number of frames) of the image sequence. 

 

DISTANCE BETWEEN TWO TRACK SETS 

Let      
               be an ordered set of ground-truth tracks, and   a set of estimated tracks, 

whose similarity to   needs to be evaluated. Since some tracks in   may not match a track in  , or vice 

versa,   is extended with     dummy tracks that are empty. Let    denote this extended set of estimated 

tracks. Furthermore, let   be the ensemble of ordered sets of tracks that can be obtained by taking     

elements from   . The distance between any     and   is then defined as the sum of the distances 
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between the     pairs of tracks given by the ordering of the two sets. This allows for the definition of the 

distance between   and   as the minimum distance between   and all possible  : 

          
   

     
    

  

   

   

 

Building the set of tracks      that minimizes the distance to  , involves reordering    and taking a 

subset of     elements from it. This task can be viewed as a rectangular assignment problem between 

the tracks in   and   . Because of the additivity and positivity of the cost of track association according to 

the above definition, this problem can be solved in polynomial time, using the Munkres algorithm.11 

 

PERFORMANCE MEASURES 

In order to evaluate the performance of any particle tracking method for any data, the output track set   

of the method was scored with respect to the ground-truth track set   of that data using the following 

measures, based on the optimal pairing        described above: 

1) The measure                       , where   denotes the set of     dummy tracks. By 

definition of         , the lower bound of        is 0, and the upper bound is       . Indeed, a pair 

of tracks    
    

   is guaranteed not to be selected by the optimization process if the distance 

between them is larger than the distance between   
  and a dummy track. The value of measure 

       therefore lies in the interval      . It takes value 1 if the pairs of tracks in   and    match 

exactly (the distance between each pair of tracks is 0). It takes value 0 if no valid match could be 

found, that is if     . It scores the best possible pairing of tracks between   and  , and ignores 

the tracks in   that did not make it into   . 

2) The measure                                        , where              denotes 

the set of tracks in   that did not make it into   , and   contains the appropriate number of dummy 

tracks, being     for        and      for        . A track in   may not have been selected for    

because either another estimated track or a dummy track was preferred over it. Such a spurious 

track typically consists of a combination of positions corresponding to different ground-truth tracks 

or to erroneous positions originating from clutter. The value of        lies in           . It takes 

value        if there are no spurious tracks in  , that is if     . And it converges to 0 as the 

number of spurious tracks increases. 
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The measures   and   account for both association errors and localization errors. For a more detailed 

analysis, it is useful to separate these two types of errors. To evaluate association performance, the 

positions at time   of two paired tracks,   
     and   

  
   , are counted as matching if they are both non-

dummy and    
       

  
    

 
  . Otherwise, they are counted as non-matching, with the exception 

of two dummy positions, which are not counted. This leads to the following measures: 

3) The number of matching positions of the optimal pairs of tracks       . These are referred to as true 

positive (  ) position pairs. 

4) The number of positions in   that are paired with a dummy position in   . These are referred to as 

false negative (  ) position pairs because the dummy positions are nevertheless associated with 

track positions in the ground-truth set  . 

5) The number of positions in the spurious tracks    and the non-matching positions in   . These are 

referred to as false positive (  ) positions because they correspond to estimated positions that were 

not associated with track positions in the ground-truth set  . 

6) The Jaccard similarity coefficient12 for positions, defined as                  , which lies in 

the interval      . It takes value 1 only if all position pairs in        are matching and     . It 

converges to 0 as the number of non-matching pairs and/or positions in    increases. 

 

It may also be useful to evaluate the association performance at the track level, rather than the position 

level. This leads to the following measures, analogous to the previous four measures: 

7) The number of non-dummy tracks in   . They are referred to as true positive tracks (   ) because 

each of them contains a majority of matching positions with a single associated track in  . 

8) The number of dummy tracks in   . These are referred to as false negative tracks (   ) because 

each of them is nevertheless associated with a single track in  . 

9) The number of tracks in   . These are referred to as false positive tracks (   ) because none of them 

is associated with a track in  . 

10) The Jaccard similarity coefficient for tracks, defined as                       , which lies 

in the interval      . It takes value 1 only if    does not contain dummy tracks and     . It 

converges to 0 as the number of dummy tracks in    and/or tracks in    increases. 

 

Finally, the localization performance is characterized by the Euclidean distance (referred to as the error) 

between the positions of paired tracks. Since non-matching positions are already penalized by the above 

measures, the computation of localization errors is limited to matching positions: 
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11) The root mean-square error (    ) in true positive position pairs (   as above). 

12) The minimum error (   ) in    position pairs. 

13) The maximum error (   ) in    position pairs. 

14) The standard deviation (  ) of error in    position pairs. 

 

EXAMPLE CASES AND PERFORMANCE VALUES 

To illustrate the effect of various tracking errors on the different performance measures, we provide 

several synthetic examples of increasing complexity. In the examples, a track is graphically represented 

as a series of point markers whose centers indicate the spatial position of the underlying particle at 

different time points, which are projected into a single image (Figure N1). The progression through time 

is indicated by a line connecting the point markers of the track. Tracks from the ground-truth set   are 

indicated by square-shaped markers connected by solid lines, while tracks from the estimated set   are 

indicated by cross-shaped markers connected by dotted lines. 

 

 

Figure N1: Ground-truth track defined for five successive time points (         ). In the 

sequel we will omit the time labels from the point markers and consider the left-most 

marker as the starting point of the track. 

 

CASE 1: NO ESTIMATED TRACKS 

We start with the pathological case in which we have a single particle with ground truth (  as given in 

Figure N1) and the particle tracking method could not find any part of the track (   ). In this case, by 

definition,      . Also, since there are no estimated tracks at all, we have          , and 

instead a dummy track is paired with the ground-truth track, yielding      , leading to       . 

Similarly, we have        , and since the ground-truth track covers five time points, we have the 

same number of matching dummy positions,     , yielding      . Without any    positions it is not 

possible to assess the localization performance of the tracking method. 
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CASE 2: ESTIMATED TRACKS IDENTICAL TO GROUND-TRUTH TRACKS 

The other extreme is the case where the output of the particle tracking method is identical to the ground 

truth (    as in Figure N2). In this case, the number of matching tracks in   is exactly the number of 

elements in  , here      , and since there are no dummy or spurious tracks, we have         

 , and thus       . Similarly, the number of positions in   is exactly the number of positions in  , here 

    , and        , yielding      . Because the distance between each pair of estimated and 

ground-truth positions is  , we have      , and all localization errors are  . 

 

 

Figure N2: Ground-truth track (square-shaped markers connected by a solid line) with a 

perfectly matching estimated track (cross-shaped markers connected by a dotted line that 

is fully overlapping and thus not visible). The larger, light colored circles around the ground-

truth positions indicate the gate   within which estimated positions are searched. 

 

CASE 3: FULLY MATCHING BUT NOT IDENTICAL TRACKS 

In this example, we consider a similar situation as in Case 2, where an optimal pairing of estimated and 

ground-truth tracks is possible without the need for dummy tracks and without leaving spurious tracks, 

but where the estimated positions are not identical to the ground-truth positions, although they are 

within the gates of the latter (Figure N3). The distortions in the estimated positions affect only   and   

and the localization measures. Since there are no spurious tracks,    , and in this example both drop 

to      . The localization errors all become    (we refer to Table N1 at the end of this section for the 

values of the performance measures for all example cases discussed). 
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Figure N3: Ground-truth track (squares connected by solid lines) with a paired estimated 

track (crosses connected by dotted lines) whose positions are not identical with, but fall 

within, the gates (light colored circles) of the ground-truth positions. 

 

CASE 4: MATCHING TRACKS HAVING NON-MATCHING POSITIONS 

Next, we reconsider the situation of Case 3, and move one of the estimated track positions out of the 

gate of the corresponding ground-truth track position (Figure N4). 

 

 

Figure N4: Estimated track (crosses connected by dotted lines) that is paired with a ground-

truth track (squares connected by solid lines) but with one position (underscored cross) 

falling outside the gate of the ground-truth track position (underscored square). 

 

As a result, this estimated position is considered non-matching with the ground truth, which translates 

into an increase in the number of false-positive positions,     . At the same time, the ground-truth 

position is now matched with a dummy position, leading to     , and since     , we have 

         . The dummy position receives a penalty that is larger than the localization error of the 

original position in Case 3, leading to a decrease of both   and  . Also, the computation of     , which 

is limited to    positions only, no longer includes the now non-matching position, whose localization 
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error was relatively large, and as a result      slightly decreases while    slightly increases. All other 

performance measures remain unaffected by the change (Table N1). 

 

CASE 5: MATCHING TRACKS WITH BIRTH AND DEATH MISMATCHES 

In the previous examples we compared tracks (estimated versus ground truth) that were defined over 

the same time interval. Now we consider a case in which the existence window of the estimated track is 

shifted by one time point compared to the ground-truth track (Figure N5). This is representative of cases 

where a particle tracking method fails to detect the right birth and death times of a particle. 

 

 

Figure N5: Estimated track (crosses connected by dotted lines) that is paired with a ground-

truth track (squares connected by solid lines) but whose start and end positions do not 

correspond to the ground truth (all problematic positions are underscored). 

 

Since the majority of the track positions still match, the two tracks are paired by the track association 

algorithm, and similar to Case 4 only the performance measures accounting for position matching and 

localization errors are affected (Table N1). Specifically, since    further decreases to  , and    increases 

to  , and the number of matched dummy positions    also increases to 2,     drops to      , and both 

  and   significantly drop to      . Because we are now missing one more position (the left-most) with 

a relatively large localization error, again      slightly decreases and    slightly increases. 

 

CASE 6: MULTIPLE ESTIMATED AND GROUND-TRUTH TRACKS 

In the following examples (Cases 6-10) we consider multiple estimated and ground-truth tracks. Together 

they cover all the types of situations encountered in our study. As a first example we extend Case 5 with 

one additional estimated and corresponding ground-truth track (Figure N6). 

 

Nature Methods: doi:10.1038/nmeth.2808



 

Figure N6: Multiple estimated tracks (crosses connected by dotted lines) that are paired 

with corresponding ground-truth tracks (squares connected by solid lines). The pairing 

produced by the track association algorithm is indicated by the coloring (the red estimated 

track is paired with the red ground-truth track, and similar for the green tracks). 

 

Since the newly added estimated track and ground-truth track match both spatially and temporally, with 

only small inaccuracies in the estimated positions, they are correctly paired by the track association 

algorithm. As a result, similar to Case 5, only the performance measures accounting for position 

matching and localization errors are affected (Table N1). In particular,    now increases to 8, making     

increase again to      , and also   and   increase significantly, to      . Because the newly added 

estimated track has relatively low localization errors, both      and    decrease. 

 

CASE 7: MISSING ESTIMATED TRACKS 

In this example we revisit Case 6 and consider the situation in which there are two ground-truth tracks 

but only one estimated track (Figure N7). This is representative of cases where a particle tracking 

method produces less tracks than the number of ground-truth tracks. The estimated track is paired with 

one of the ground-truth tracks (the one whose positions match best) while the remaining ground-truth 

track is matched with a dummy track. As a result,          , and since still      , we have 

        . Because the number of    positions decreases back to the level of Case 5, while the number 

of    positions increases by the same amount, the value of     now drops significantly, as do the values 
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of both   and   (Table N1). And since localization errors are computed only for    positions, the values 

of the corresponding performance measures are the same as in Case 5. 

 

 

Figure N7: Two ground-truth tracks (squares connected by solid lines) but only one 

estimated track (crosses connected by dotted lines). The pairing produced by the track 

association algorithm is indicated by the coloring (the red estimated track is paired with the 

red ground-truth track while the green ground-truth track is paired with a dummy). 

 

CASE 8: SPURIOUS ESTIMATED TRACKS 

Here we again revisit Case 6, but consider the reverse situation as in Case 7, in that we now have two 

estimated tracks but only one ground-truth track (Figure N8). This is representative of cases where a 

particle tracking method produces more tracks than the number of ground-truth tracks. One of the 

estimated tracks (whose positions match best) is paired with the single ground-truth track while the 

other estimated track is considered spurious and remains non-paired. As a result,          , and 

since      , we still have         . Because the    and    positions are interchanged compared to 

Case 7, the value of     remains the same, but   increases back to the level of Case 5 (Table N1), as it 

does not penalize spurious tracks. And since localization errors are computed only for    positions, the 

values of the corresponding performance measures are the same as in Cases 5 and 7. 
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Figure N8: Two estimated tracks (crosses connected by dotted lines) but only one ground-

truth track (squares connected by solid lines). The pairing produced by the track association 

algorithm is indicated by the coloring (the red estimated track is paired with the single 

ground-truth track while the green estimated track is considered spurious). 

 

CASE 9: BROKEN ESTIMATED TRACKS 

In this example we consider a similar situation as in Case 6 but with one of the two estimated tracks 

being broken into two pieces (Figure N9). This is representative of cases where a particle tracking 

method fails to bridge relatively large gaps between successive positions and produces broken tracks. In 

this case only one of the broken track segments (the one that matches best) is paired with the 

corresponding ground-truth track, and the other is considered spurious, yielding      . Since all 

ground-truth tracks are paired, we have       and      , resulting in           . Similarly, for 

the track positions we find      (two spurious and two non-matching positions),      (ground-

truth positions paired with a dummy position), and     , resulting in          . Compared to Cases 

7 and 8, both   and   increase because of a better matching of points, but they remain lower than in 

Case 6, and due to the presence of a spurious track they continue to have different values (Table N1). 

Since localization errors are computed only for    positions, the values of the corresponding 

performance measures are similar to those in Case 6. 
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Figure N9: Two ground-truth tracks (squares connected by solid lines) but three estimated 

tracks (crosses connected by dotted lines) resulting from a linking failure. The pairing 

produced by the track association algorithm is indicated by the coloring (the red estimated 

track is paired with the red ground-truth track, and the green estimated track is paired with 

the green ground-truth track, while the black estimated track is considered spurious). 

 

CASE 10: MIXED UP ESTIMATED TRACKS 

In this last example we revisit Case 9 and consider estimated tracks consisting of detected particle 

positions belonging to different ground-truth tracks (Figure N10). This is representative of cases where a 

particle tracking method erroneously switches particle tracks. In the particular case considered here, one 

estimated track is paired with one of the ground-truth tracks, thus      , but the other estimated 

track does not match with the other ground-truth track, as the majority of its positions is too far off. It 

thus remains non-paired, yielding      , and consequently the ground-truth track is paired with a 

dummy track, yielding      , and thus           . In terms of positions we find that        , 

while     , resulting in          . Both   and   decrease compared to Case 9 (Table N1) while 

remaining different from each other due to the presence of a spurious track. Finally, the localization 

errors are now computed based on only three    positions, and are relatively small. 
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Figure N10: Two ground-truth tracks (squares connected by solid lines) and two estimated 

tracks (crosses connected by dotted lines) resulting from linking failures. The pairing 

produced by the track association algorithm is indicated by the coloring (the green 

estimated track is paired with the green ground-truth track while the black estimated track 

is not paired but considered spurious). 

 

Table N1: Overview of the performance values for all discussed example cases. All floating-

point values are given with three decimal places. 

Case                                                   

1 0.000 0.000 0 5 0 0.000 0 1 0 0.000 - - - - 

2 1.000 1.000 5 0 0 1.000 1 0 0 1.000 0.000 0.000 0.000 0.000 

3 0.364 0.364 5 0 0 1.000 1 0 0 1.000 3.317 1.414 4.123 0.935 

4 0.308 0.308 4 1 1 0.667 1 0 0 1.000 3.240 1.414 4.123 1.018 

5 0.052 0.052 3 2 2 0.429 1 0 0 1.000 3.109 1.414 4.123 1.121 

6 0.256 0.256 8 2 2 0.667 2 0 0 1.000 2.894 1.414 4.123 0.822 

7 0.026 0.026 3 7 2 0.250 1 1 0 0.500 3.109 1.414 4.123 1.121 

8 0.052 0.026 3 2 7 0.250 1 0 1 0.500 3.109 1.414 4.123 1.121 

9 0.168 0.140 6 4 4 0.429 2 0 1 0.667 2.887 1.414 4.123 0.828 

10 0.142 0.089 3 7 7 0.176 1 1 1 0.333 2.646 2.236 2.828 0.279 
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Supplementary Note 4: Simulation and Evaluation Software Tools 

 

This document provides a description of the software developed for this study. Two software tools were 

developed. The first tool is able to generate the simulated image data and corresponding ground truth as 

described in Supplementary Note 2. The second tool computes the performance measures described in 

Supplementary Note 3 for assessing the performance of a given particle tracking method with respect to 

the ground truth. Software implementations of the particle tracking methods themselves are available 

from the participating teams as indicated in Supplementary Note 1. 

 

SOFTWARE FOR GENERATING SIMULATED IMAGE DATA 

The software for generating simulated image data was written in the Java programming language as a 

plugin named ISBI Challenge Tracking Benchmark Generator for the open bioimage informatics platform 

Icy.1 A snapshot of the plugin interface and a description of the parameters is given below. 

The interface is divided into several areas. At the top, the user 

can select an Export folder to store the simulated image data 

and the ground truth files. 

The area Common values allows the user to set the values of 

the parameters used for all scenarios: The Seed to initialize the 

random processes driving the simulation (a different seed was 

used for the training data versus the competition data), the 

Image width (in pixels), the Image height (in pixels), and the 

Sequence length (in frames). Random number generation was 

done using the Flanagan library2 implementing the appropriate 

algorithms for the different deviates needed.3 

The next four areas specify the parameters specific to each of 

the scenarios (nicknamed Vesicles, Microtubules, Receptors, 

Viruses). It is possible to Enable the computation for each 

scenario separately and to specify the SNR levels (an array of 

values) and Density levels (an array of values) as well as the 

Image depth (number of slices). 
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The last area consists of buttons to Run the plugin and to Save or Load the parameter settings. Except 

for Seed, the values shown are the values used in this study. 

 

For each image sequence (corresponding to a given scenario, SNR level, and density level) the plugin 

exports each slice and each frame as a separate file in the tagged image file format (TIFF). The ground 

truth is exported as an Extensible Markup Language (XML) file. This file specifies the spatial position (x, y, 

z) of each particle in each relevant frame (t). The spatial coordinates may be specified with floating-point 

precision and range from 0 (the center of the first pixel in any dimension) to N-1 (the center of the last 

pixel in any dimension). The temporal coordinate is an integer index, which may range from 0 (the first 

frame) to N-1 (the last frame), but only the relevant frames need to be specified. An example of an XML 

file is given below. More technical details are provided on the website. 

 

 <?xml version="1.0" encoding="utf-8" standalone="no"?> 

 <root> 

 <TrackContestISBI2012 snr="2" density="low" scenario="virus"> 

  <particle> 

   <detection t="4" x="14" y="265" z="5.1"/> 

   <detection t="5" x="14.156" y="266.5" z="4.9"/> 

   <detection t="6" x="15.32" y="270.1" z="5.05"/> 

  </particle> 

  <particle> 

   <detection t="14" x="210.14" y="12.5" z="1"/> 

   <detection t="15" x="210.09" y="13.458" z="1.05"/> 

   <detection t="16" x="210.19" y="14.159" z="1.122"/> 

  </particle> 

 </TrackContestISBI2012> 

 </root> 

 

The particle tracks stored in the XML file can be visualized either in Icy, using the plugins Track Manager4 

and ISBI Challenge Tracks Importer,5 or in ImageJ6,7 / Fiji8 using the MTrackJ plugin, after conversion to 

the MTrackJ Data Format (MDF) as described on the website. 

 

SOFTWARE FOR COMPUTING PERFORMANCE MEASURES 

The software for computing the performance measures was written in the Java programming language, 

both as a stand-alone application, and as a plugin named Tracking Performance Measures9 for Icy. Both 

compute the full set of performance measures described in Supplementary Note 3. The stand-alone 
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application can simply be run from the command line as explained on the website. The Icy plugin 

requires the Track Manager plugin, which provides many useful tools for track visualization and track 

processing, and is already part of Icy. In order to load tracks into the Track Manager from an XML file 

that follows the format used in this study, the ISBI Challenge Tracks Importer plugin is needed, which is 

able to parse the file and convert the tracks to a data structure used by Icy. This importer can be selected 

in the Track Manager by clicking the Add Track Processor button, and the XML file can then be imported 

by clicking the Load Tracks button, shown in the snapshot below. 

 

 

 

The Track Manager can load multiple track files, resulting in different track groups. In order to compute 

the performance of a given tracking method for a given image sequence, two files must be loaded: the 

XML file containing the output of the tracker, and the XML file containing the ground truth tracks. By 

clicking the Add Track Processor button of the Track Manager again, the mentioned plugin Tracking 

Performance Measures can be added, a snapshot of which is shown below. Clicking the Select track 

groups button of this plugin allows the user to select one of the track groups as the Reference group 

(the ground truth tracks) and the other as the Candidate group (the tracker output). The computation of 

the performance measures is started by clicking the Pair tracks button. The field Maximum distance 
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between detections specifies the gate   described in the Supplementary Note 3. Upon completion, the 

resulting performance measures are listed in the area Tracking performance. 
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DOWNLOADING THE SOFTWARE 

The software and detailed instructions are available from the website: 

URL: http://bioimageanalysis.org/track/ 

Login: anonymous@bioimageanalysis.org 

Password: erfg14d3 
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